Skip to main content

Regulation of Gibberellin and Brassinosteroid Biosynthesis by Genetic, Environmental and Hormonal Factors

  • Chapter
Plant Hormones

Abstract

The biosynthesis of plant hormones involves a series of steps that converts intermediates with little or no biological activity into the active form. Usually each step is catalysed by an enzyme that is in turn encoded by a gene, referred to as a hormone “synthesis gene”. Mutations in these genes can give rise to “synthesis mutants”, which are deficient to varying extents in the hormone in question. The striking phenotypes of some of these mutants provide the most graphic evidence that plant hormones are essential factors for plant growth and development. Striking phenotypes can also be caused by mutations that impair hormone deactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111: 9-17

    Article  CAS  PubMed  Google Scholar 

  2. Ait-Ali T, Frances S, Weller JL, Reid JB, Kendrick RE, Kamiya Y (1999) Regulation of gibberellin 20-oxidase and gibberellin 3β-hydroxylase transcript accumulation during de-etiolation of pea seedlings. Plant Physiol 121: 783-91

    Article  CAS  PubMed  Google Scholar 

  3. Ait-Ali T, Swain SM, Reid JB, Sun T, Kamiya Y (1997) The LS locus of pea encodes the gibberellin biosynthesis enzyme ent-kaurene synthase A. Plant J 11: 443-454

    Article  CAS  PubMed  Google Scholar 

  4. Altmann T (1999) Molecular physiology of brassinosteroids revealed by the analysis of mutants. Planta 208: 1-11

    Article  CAS  PubMed  Google Scholar 

  5. Behringer FJ, Cosgrove DJ, Reid JB, Davies PJ (1990) Physical basis for altered stem elongation rates in internode length mutants of Pisum. 94: 166-173

    CAS  Google Scholar 

  6. Bishop GJ, Nomura T, Yokota T, Harrison K, Noguchi T, Fujioka S, Takatsuto S, Jones JD, Kamiya Y (1999) The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc Natl Acad Sci USA 96: 1761-1766

    Article  CAS  PubMed  Google Scholar 

  7. Brady SM, McCourt P (2003) Hormone cross talk in seed dormancy. J Plant Growth Regul 22: 25-31

    Article  CAS  Google Scholar 

  8. Brian PW, Hemming HG (1955) The effects of gibberellic acid on shoot growth of pea seedlings. Physiol Plant 8: 669-681

    Article  CAS  Google Scholar 

  9. Chory J, Li J (1997) Gibberellins, brassinosteroids and light-regulated development. Plant Cell Environ 20: 801-806

    Article  CAS  Google Scholar 

  10. Clouse SD (2001) Integration of light and brassinosteroid signals in etiolated seedling growth. Trends Plant Sci 6: 443-445

    Article  CAS  PubMed  Google Scholar 

  11. Davidson SE, Elliott RC, Helliwell CA, Poole AT, Reid JB (2003) The pea gene NA encodes ent-kaurenoic acid oxidase. Plant Physiol 131: 335-344

    Article  CAS  PubMed  Google Scholar 

  12. Davidson SE, Reid JB (2004) The pea gene LH encodes ent-kaurene oxidase. Plant Physiol 134, 1123-1134

    Article  CAS  PubMed  Google Scholar 

  13. Elliott RC, Ross JJ, Smith JJ, Lester DR, Reid JB (2001) Feed-forward regulation of gibberellin deactivation in pea. J Plant Growth Regul 20: 87-94.

    Article  CAS  Google Scholar 

  14. Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54: 137-164

    Article  CAS  PubMed  Google Scholar 

  15. Gil J, García-Martinez JL (2000) Light regulation of gibberellin A1 content and expression of genes coding for GA 20-oxidase and GA 3β-hydroxylase in etiolated pea seedlings. Physiol Plant 108: 223-228

    Article  CAS  Google Scholar 

  16. Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S (2002) Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 130: 1319-34.

    Article  CAS  PubMed  Google Scholar 

  17. Hedden P, Croker SJ (1992) Regulation of gibberellin biosynthesis in maize seedlings. In CM Karssen, LC van Loon, D Vreugdenhil, eds, Progress in Plant Growth Regulation. Kluwer Academic Publishers, Dordrecht, pp 534-544

    Google Scholar 

  18. Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5: 523-530

    Article  CAS  PubMed  Google Scholar 

  19. Ingram TJ, Reid JB, MacMillan J (1986) The quantitative relationship between gibberellin A1 and internode growth in Pisum sativum L. Planta 168: 414-420

    Article  CAS  Google Scholar 

  20. Ingram TJ, Reid JB, Murfet IC, Gaskin P, Willis CL, MacMillan J (1984) Internode length in Pisum: the Le gene controls the 3β-hydroxylation of gibberellin A20 to gibberellin A1. Planta 160: 455-463

    Article  CAS  Google Scholar 

  21. Kang JG, Yun J, Kim DH, Chung KS, Fujioka S, Kim JI, Dae HW, Yoshida S, Takatsuto S, Song PS, Park CM (2001) Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growth. Cell 105: 625-636

    Article  CAS  PubMed  Google Scholar 

  22. Law DM, Davies PJ (1990) Comparative indole-3-acetic acid levels in the slender pea and other pea phenotypes. Plant Physiol 93: 1539-1543

    Article  CAS  PubMed  Google Scholar 

  23. Lawrence NL, Ross JJ, Mander LN, Reid JB (1992) Internode length in Pisum. Mutants lk, lka and lkb do not accumulate gibberellins. J Plant Growth Regul 11: 35-37

    Article  CAS  Google Scholar 

  24. Lester DR, Ross JJ, Ait-Ali T, Martin DN, Reid JB (1996) A gibberellin 20-oxidase cDNA (Accession no. U58830) from pea (Pisum sativum L.) seed. Plant Physiol 111: 1353

    Article  Google Scholar 

  25. Lester DR, Ross JJ, Davies PJ, Reid JB (1997) Mendel’s stem length gene (Le) encodes a gibberellin 3β-hydroxylase. Plant Cell 9: 1435-1443

    Article  CAS  PubMed  Google Scholar 

  26. Lester DR, Ross JJ, Smith JJ, Elliott RC, Reid JB (1999) Gibberellin 2-oxidation and the SLN gene of Pisum sativum. Plant J 19: 65-73

    Article  CAS  PubMed  Google Scholar 

  27. Li J, Nagpal P, Vitart V, McMorris TC, Chory J (1996) A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272: 398-401

    Article  CAS  PubMed  Google Scholar 

  28. Ma L, Li J, Qu L, Hager J, Chen Z, Zhao H, Deng XW (2001) Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13: 2589-2607

    Article  CAS  PubMed  Google Scholar 

  29. Martin DN, Proebsting WM, Hedden P (1997) Mendel's dwarfing gene: cDNAs from the le alleles and function of the expressed proteins. Proc Natl Acad Sci USA 94: 8907-8911

    Article  CAS  PubMed  Google Scholar 

  30. Martin DN, Proebsting WM, Hedden P (1999) The SLENDER gene of pea encodes a gibberellin 2-oxidase. Plant Physiol 121:775-781

    Article  CAS  PubMed  Google Scholar 

  31. Martin DN, Proebsting WM, Parks TD, Dougherty WG, Lange T, Lewis MJ, Gaskin P, Hedden P (1996) Feed-back regulation of gibberellin biosynthesis and gene expression in Pisum sativum L. Planta 200: 159-166

    Article  CAS  PubMed  Google Scholar 

  32. McKay MJ, Ross JJ, Lawrence NL, Cramp RE, Beveridge CA, Reid JB (1994) Control of internode length in Pisum sativum. Further evidence for the involvement of indole-3- acetic acid. Plant Physiol 106: 1521-1526

    CAS  PubMed  Google Scholar 

  33. Nagata N, Min YK, Nakano T, Asami S, Yoshida S (2000) Treatment of dark-grown Arabidopsis thaliana with a brassinosteroid-biosynthesis inhibitor, brassinazole, induces some characteristics of light-grown plants. Planta 211: 781-790

    Article  CAS  PubMed  Google Scholar 

  34. Nakaya M, Tsukaya H, Murakami N, Kato M (2002) Brassinosteroids control the proliferation of leaf cells of Arabidopsis thaliana. Plant Cell Physiol 43: 239-244

    Article  CAS  PubMed  Google Scholar 

  35. Nemhauser J, Chory J (2002) Photomorphogenesis. In: CR Somerville, EM Meyerowitz eds. The Arabidopsis Book. American Society of Plant Biologists, Rockville, MD http://www.aspb.org/downloads/arabidopsis/nemhau.p

  36. Nomura T, Bishop GJ, Kaneta T, Reid JB, Chory J, Yokota T (2004) The LKA gene is a BRASSINOSTEROID INSENSITIVE1 homolog of pea. Plant J 36: 291-300

    Article  Google Scholar 

  37. Nomura T, Kitasaka Y, Takatsuto S, Reid JB, Fukami M, Yokota T (1999) Brassinosteroid/sterol synthesis and plant growth as affected by lka and lkb mutations of pea. Plant Physiol 119: 1517-1526

    Article  CAS  PubMed  Google Scholar 

  38. Nomura T, Nakayama M, Reid JB, Takeuchi Y, Yokota T (1997) Blockage of brassinosteriod biosynthesis and sensitivity causes dwarfism in garden pea. Plant Physiol 113: 31-37

    CAS  PubMed  Google Scholar 

  39. Nomura T, Sato T, Bishop GJ, Kamiya Y, Takasuto S, Yokota T (2001) Accumulation of 6-deoxocathasterone and 6-deoxocastasterone in Arabidopsis, pea and tomato is suggestive of common rate-limiting steps in brassinosteroid biosynthesis. Phytochem 57: 171-178

    Article  CAS  Google Scholar 

  40. Nomura T, Jager C, Kitisaka Y, Takeuchi K, Fukami M, Yoneyama K, Matsushita Y, Nyunoya H, Takasuto S, Fijioka S, Smith J, Kerckhoffs LH, Reid JB, Yokota T (2004) Brassinosteroid deficiency due to truncated 5 -reductase causes dwarfism in the lk mutant of pea. Plant Physiol (In press)

    Google Scholar 

  41. O’Neill DP, Ross JJ (2002) Auxin regulation of the gibberellin pathway in pea. Plant Physiol 130: 1974-1982

    Article  PubMed  Google Scholar 

  42. O’Neill DP, Ross JJ, Reid JB (2000) Changes in gibberellin A1 levels and response during de-etiolation of pea seedlings. Plant Physiol 124: 805-812

    Article  PubMed  Google Scholar 

  43. Reid JB, Botwright NA, Smith JJ, O’Neill DP, Kerckhoffs LHJ (2002) Control of gibberellin levels and gene expression during de-etiolation in pea. Plant Physiol 128: 734-741

    Article  CAS  PubMed  Google Scholar 

  44. Reid JB, Murfet IC, Potts WC (1983) Internode length in Pisum. II. Additional information on the relationship and action of loci Le, La, Cry, Na, and Lm. J Exp Bot 34: 349-364.

    Article  Google Scholar 

  45. Reid JB, Ross JJ (1993) A mutant-based approach, using Pisum sativum, to understanding plant growth. Int J Plant Sci 154: 22-34

    Article  Google Scholar 

  46. Reid JB, Ross JJ, Swain SM (1992) Internode length in Pisum. A new slender mutant with elevated levels of C19 gibberellins. Planta 188: 462-467

    Article  CAS  Google Scholar 

  47. Ross JJ, MacKenzie-Hose AK, Davies PJ, Lester DR, Twitchin B, Reid JB (1999) Further evidence for feedback regulation of gibberellin biosynthesis in pea. Physiol Plant 105: 532-538

    Article  CAS  Google Scholar 

  48. Ross JJ, O’Neill DP, Rathbone DA (2003) Auxin-gibberellin interactions in pea: Integrating the old with the new. J Plant Growth Regul 22: 99-108

    Article  CAS  Google Scholar 

  49. Ross JJ, O’Neill DP, Smith JJ, Kerckhoffs LHJ, Elliott RC (2000) Evidence that auxin promotes gibberellin A1 biosynthesis in pea. Plant J 21: 547-552

    Article  CAS  PubMed  Google Scholar 

  50. Ross JJ, O’Neill DP, Wolbang CM, Symons GM, Reid JB (2002) Auxin-gibberellin interactions and their role in plant growth. J Plant Growth Regul 20: 346-353

    Google Scholar 

  51. Ross JJ, Reid JB, Dungey HS (1992) Ontogenetic variation in levels of gibberellin A1 in Pisum. Implications for the control of stem elongation. Planta 186: 166-171

    Article  CAS  Google Scholar 

  52. Ross JJ, Reid JB, Swain SM, Hasan O, Poole AT, Hedden P, Willis CL (1995) Genetic regulation of gibberellin deactivation in Pisum. Plant J 7: 513-523

    Article  CAS  Google Scholar 

  53. Santes CM, Hedden P, Sponsel VM, Reid JB, Garcia-Martinez JL (1993) Expression of the le mutation in young ovaries of Pisum sativum and its effect on fruit development. Plant Physiol 101: 759-764

    CAS  PubMed  Google Scholar 

  54. Schaller H (2003) The role of sterols in plant growth and development. Prog Lip Res 42: 163-175

    Article  CAS  Google Scholar 

  55. Schultz L, Kerckhoffs LHJ, Klahre U, Yokota T, Reid JB (2001) Molecular characterisation of the brassinosteroid-deficient lkb mutant in pea. Plant Mol Biol 47: 491-498

    Article  CAS  PubMed  Google Scholar 

  56. Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S, Yoshida S (2003) Organspecific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol 131:287-297

    Article  CAS  PubMed  Google Scholar 

  57. Swain SM, Reid JB, Ross JJ (1993) Seed development in Pisum. The lhi allele reduces gibberellin levels in developing seeds, and increases seed abortion. Planta 191: 482-488

    Article  CAS  Google Scholar 

  58. Symons GM, Reid JB (2003a) Hormone levels and response during de-etiolation in pea. Planta 216: 422-31

    CAS  PubMed  Google Scholar 

  59. Symons GM, Reid JB (2003b) Interactions between light and plant hormones during deetiolation. J Plant Growth Regul 22: 3-14

    Article  CAS  Google Scholar 

  60. Symons GM, Reid JB (2004) Brassinosteroids do not undergo long distance transport in pea: Implications for the regulation of endogenous brassinosteroid levels. Plant Physiol (In press)

    Google Scholar 

  61. Symons GM, Schultz L, Kerckhoffs LHJ, Davies NW, Gregory D, Reid JB (2002) Uncoupling brassinosteroid levels and de-etiolation in pea. Physiol Plant 115: 311-319

    Article  CAS  PubMed  Google Scholar 

  62. van Huizen R, Ozga JA, Reinecke DM (1997) Seed and hormonal regulation of gibberellin 20-oxidase expression in pea pericarp. Plant Physiol 115: 123-128

    PubMed  Google Scholar 

  63. Wang Z-Y, Seto H, Fujioka S, Yoshida S, Chory J (2001) BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410: 380-383

    Article  CAS  PubMed  Google Scholar 

  64. Weller JL, Ross JJ, Reid JB (1994) Gibberellins and phytochrome regulation of stem elongation in pea. Planta 192: 489-496

    Article  CAS  Google Scholar 

  65. Yang T, Davies PJ, Reid JB (1996) Genetic dissection of the relative roles of auxin and gibberellin in the regulation of stem elongation in intact light-grown peas. Plant Physiol 110: 1029-1034

    CAS  PubMed  Google Scholar 

  66. Yaxley JR, Ross JJ, Sherriff LJ, Reid JB (2001) Gibberellin biosynthesis mutations and root development in pea. Plant Physiol 125: 627-633

    Article  CAS  PubMed  Google Scholar 

  67. Yokota T (1999) Brassinosteroids. In: PJJ Hooykaas, MA Hall, KR Libbenga (eds) Biochemistry and molecular biology of plant hormones. Elsevier Science. pp 277-292

    Google Scholar 

  68. Yokota T, Nomura T, Sato T, Tamaki Y (2001) Light regulates brassinosteroid biosynthesis in rice. 17th IPGSA Meeting. Abstract 191.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B. Reid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Reid, J.B., Symons, G.M., Ross, J.J. (2010). Regulation of Gibberellin and Brassinosteroid Biosynthesis by Genetic, Environmental and Hormonal Factors. In: Davies, P.J. (eds) Plant Hormones. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2686-7_9

Download citation

Publish with us

Policies and ethics