Advertisement

Plant Hormones pp 156-178 | Cite as

Brassinosteroid Biosynthesis and Metabolism

Abstract

The sessile nature of plants requires distinctive regulatory mechanisms to meet the demands of development and environmental challenges. Various plant hormones that act alone or in concert underpin these mechanisms. Brassinosteroids (BRs) collectively refers to naturally-occurring 5α cholestane steroids that elicit growth stimulation in nano- or micromolar concentrations (15). BRs that are biosynthesized using sterols as precursors are structurally similar to the cholesterol-derived, human steroid hormones and insect molting hormones. BRs have been known for decades to be effective in plant growth promotion. However, definitive evidence for their roles in growth and development remained unclear until the recent characterization of BR dwarf mutants isolated from Arabidopsis and other plants. This chapter1 aims to provide a cohesive summary of information about progress made in the molecular genetic characterization of mutants that are defective in sterol and BR biosynthetic pathways.

Keywords

Dwarf Mutant Brassinosteroid Biosynthesis Insect Molting Hormone Tomato Dwarf DWF4 Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arteca RN (1996) Plant growth substances: principles and applications. Chapman and Hall, New YorkGoogle Scholar
  2. 2.
    Asami T, Mizutani M, Fujioka S, Goda H, Min YK, Shimada Y, Nakano T, Takatsuto S, Matsuyama T, Nagata N, Sakata K, Yoshida S (2001) Selective interaction of triazole derivatives with DWF4, a cytochrome P450 monooxygenase of the brassinosteroid biosynthetic pathway, correlates with brassinosteroid deficiency in planta. J Biol Chem 276: 25687-25691CrossRefPubMedGoogle Scholar
  3. 3.
    Azpiroz R, Wu Y, LoCascio JC, Feldmann KA (1998) An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell 10: 219-230CrossRefPubMedGoogle Scholar
  4. 4.
    Benveniste P (2002) Sterol metabolism. In CR Somerville, EM Meyerowitz, eds, The Arabidopsis Book. American Society of Plant Biologists, Rockville, MD. http://www.aspb.org/publications/arabidopsis/
  5. 5.
    Bishop G, Harrison K, Jones JDG (1996) The Tomato Dwarf gene isolated by heterologous transposon tagging encodes the first member of a new cytochrome P450 family. Plant Cell 8: 959-969CrossRefPubMedGoogle Scholar
  6. 6.
    Bishop GJ, Nomura T, Yokota T, Harrison K, Noguchi T, Fujioka S, Takatsuto S, Jones JD, Kamiya Y (1999) The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc Natl Acad Sci U S A 96: 1761-1766CrossRefPubMedGoogle Scholar
  7. 7.
    Carland FM, Fujioka S, Takatsuto S, Yoshida S, Nelson T (2002) The identification of CVP1 reveals a role for sterols in vascular patterning. Plant Cell 14: 2045-2058CrossRefPubMedGoogle Scholar
  8. 8.
    Choe S, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, Feldmann KA (1998) The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22a-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell 10: 231-243CrossRefPubMedGoogle Scholar
  9. 9.
    Choe S, Dilkes BP, Gregory BD, Ross AS, Yuan H, Noguchi T, Fujioka S, Takatsuto S, Tanaka A, Yoshida S, Tax FE, Feldmann KA (1999) The Arabidopsis dwarf1 mutant is defective in the conversion of 24- methylenecholesterol to campesterol in brassinosteroid biosynthesis. Plant Physiol 119: 897-907CrossRefPubMedGoogle Scholar
  10. 10.
    Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA (2001) Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J 26: 573-582CrossRefPubMedGoogle Scholar
  11. 11.
    Choe S, Noguchi T, Fujioka S, Takatsuto S, Tissier CP, Gregory BD, Ross AS, Tanaka A, Yoshida S, Tax FE, Feldmann KA (1999) The Arabidopsis dwf7/ste1 mutant is defective in the D7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell 11: 207-221CrossRefPubMedGoogle Scholar
  12. 12.
    Choe S, Schmitz RJ, Fujioka S, Takatsuto S, Lee MO, Yoshida S, Feldmann KA, Tax FE (2002) Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3b-like kinase. Plant Physiol 130: 1506-1515CrossRefPubMedGoogle Scholar
  13. 13.
    Choe S, Tanaka A, Noguchi T, Fujioka S, Takatsuto S, Ross AS, Tax FE, Yoshida S, Feldmann KA (2000) Lesions in the sterol D7 reductase gene of Arabidopsis cause dwarfism due to a block in brassinosteroid biosynthesis. Plant J 21: 431-443CrossRefPubMedGoogle Scholar
  14. 14.
    Chory J, Nagpal P, Peto C (1991) Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell 3: 445-459CrossRefPubMedGoogle Scholar
  15. 15.
    Clouse SD, Sasse JM (1998) Brassinosteroids: Essential Regulators of Plant Growth and Development. Annu Rev Plant Physiol Plant Mol Biol 49: 427-451CrossRefPubMedGoogle Scholar
  16. 16.
    Diener AC, Li H, Zhou W, Whoriskey WJ, Nes WD, Fink GR (2000) Sterol methyltransferase 1 controls the level of cholesterol in plants. Plant Cell 12: 853-870CrossRefPubMedGoogle Scholar
  17. 17.
    Fujioka S, Inoue T, Takatsuto S, Yanagisawa T, Yokota T, Sakurai A (1995) Biological activities of biosynthetically-related congeners of brassinolide. Biosci Biotech Biochem 59: 1973-1975CrossRefGoogle Scholar
  18. 18.
    Fujioka S, Li J, Choi YH, Seto H, Takatsuto S, Noguchi T, Watanabe T, Kuriyama H, Yokota T, Chory J, Sakurai A (1997) The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. Plant Cell 9: 1951-1962CrossRefPubMedGoogle Scholar
  19. 19.
    Fujioka S, Sakurai A (1997) Brassinosteroids. Nat Prod Rep 14: 1-10CrossRefPubMedGoogle Scholar
  20. 20.
    Fujioka S, Takatsuto S, Yoshida S (2002) An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway. Plant Physiol 130: 930-939CrossRefPubMedGoogle Scholar
  21. 21.
    Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54: 137-164CrossRefPubMedGoogle Scholar
  22. 22.
    Grebenok RJ, Ohnmeiss TE, Yamamoto A, Huntley ED, Galbraith DW, Della Penna D (1998) Isolation and characterization of an Arabidopsis thaliana C-8,7 sterol isomerase: functional and structural similarities to mammalian C-8,7 sterol isomerase/emopamil-binding protein. Plant Mol Biol 38: 807-815CrossRefPubMedGoogle Scholar
  23. 23.
    Greeve I, Hermans-Borgmeyer I, Brellinger C, Kasper D, Gomez-Isla T, Behl C, Levkau B, Nitsch RM (2000) The human DIMINUTO/DWARF1 homolog seladin-1 confers resistance to Alzheimer's disease-associated neurodegeneration and oxidative stress. J Neurosci 20: 7345-7352PubMedGoogle Scholar
  24. 24.
    Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Jr JDW, Steffens GL, Flippen-Anderson JL, Jr JCC (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281: 216-217CrossRefGoogle Scholar
  25. 25.
    He JX, Fujioka S, Li TC, Kang SG, Seto H, Takatsuto S, Yoshida S, Jang JC (2003) Sterols regulate development and gene expression in Arabidopsis. Plant Physiol 131: 1258-1269CrossRefPubMedGoogle Scholar
  26. 26.
    Husselstein T, Gachotte D, Desprez T, Bard M, Benveniste P (1996) Transformation of Saccharomyces cerevisiae with a cDNA encoding a sterol C-methyltransferase from Arabidopsis thaliana results in the synthesis of 24-ethyl sterols. FEBS Let 381: 87-92CrossRefGoogle Scholar
  27. 27.
    Jang JC, Fujioka S, Tasaka M, Seto H, Takatsuto S, Ishii A, Aida M, Yoshida S, Sheen J (2000) A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of Arabidopsis thaliana. Genes Dev 14: 1485-1497PubMedGoogle Scholar
  28. 28.
    Kauschmann A, Jessop A, Koncz C, Szekeres M, Willmitzer L, Altmann T (1996) Genetic evidence for an essential role of brassinosteroids in plant development. Plant J 9: 701-713CrossRefGoogle Scholar
  29. 29.
    Kim GT, Tsukaya H, Uchimiya H (1998) The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells. Genes Dev 12: 2381-2391CrossRefPubMedGoogle Scholar
  30. 30.
    Klahre U, Noguchi T, Fujioka S, Takatsuto S, Yokota T, Nomura T, Yoshida S, Chua NH (1998) The Arabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis [In Process Citation]. Plant Cell 10: 1677-1690CrossRefPubMedGoogle Scholar
  31. 31.
    Koka CV, Cerny RE, Gardner RG, Noguchi T, Fujioka S, Takatsuto S, Yoshida S, Clouse SD (2000) A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response. Plant Physiol 122: 85-98CrossRefPubMedGoogle Scholar
  32. 32.
    Kolbe A, Schneider B, Porzel A, Schmidt J, Adam G (1995) Acyl-conjugated metabolites of brassinosteroids in cell suspension cultures of Ornithopus sativus. Phytochemistry 38: 633-636CrossRefGoogle Scholar
  33. 33.
    Lecain E, Chenivesse X, Spagnoli R, Pompon D (1996) Cloning by metabolic interference in yeast and enzymatic characterization of Arabidopsis thaliana sterol delta-7-reductase. J. Biol. Chem. 271: 10866-10873CrossRefPubMedGoogle Scholar
  34. 34.
    Li J, Nagpal P, Vatart V, McMorris TC, Chory J (1996) A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272: 398-401CrossRefPubMedGoogle Scholar
  35. 35.
    Lorence MC, Murry BA, Trant JM, Mason JI (1990) Human 3B-hydroxysteroid dehydrogenase/D5 to D4 isomerase from placenta: expression in nonsteroidogenic cells of a protein that catalyzes the dehydrogenation/isomerization of C21 and C19 steroids. Endocrinology 126: 2493-2498CrossRefPubMedGoogle Scholar
  36. 36.
    Mandava NB (1988) Plant growth-promoting brassinosteroids. Ann Rev Plant Physiol Plant Mol Biol 39: 23-52CrossRefGoogle Scholar
  37. 37.
    Marquardt V, Adam G (1991) Recent advances in brassinosteroid research. In W Ebing, ed, Chemistry of plant protection, Vol 7. Springer Verlag, Berlin, pp 103-139Google Scholar
  38. 38.
    Mathur J, Molnar G, Fujioka S, Takatsuto S, Sakurai A, Yokota T, Adam G, Voigt B, Nagy F, Maas C, Schell J, Koncz C, Szekeres M (1998) Transcription of the Arabidopsis CPD gene, encoding a steroidogenic cytochrome P450, is negatively controlled by brassinosteroids. Plant J 14: 593-602CrossRefPubMedGoogle Scholar
  39. 39.
    McNellis TW, Deng X-W (1995) Light control of seedling morphogenetic pattern. Plant Cell 7: 1749-1761CrossRefPubMedGoogle Scholar
  40. 40.
    Neff MM, Nguyen SM, Malancharuvil EJ, Fujioka S, Noguchi T, Seto H, Tsubuki M, Honda T, Takatsuto S, Yoshida S, Chory J (1999) BAS1: A gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc Natl Acad Sci U S A 96: 15316-15323CrossRefPubMedGoogle Scholar
  41. 41.
    Noguchi T, Fujioka S, Choe S, Takatsuto S, Yoshida S, Yuan H, Feldmann KA, Tax FE (1999) Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol. 121: 743-752CrossRefPubMedGoogle Scholar
  42. 42.
    Nomura T, Kitasaka Y, Takatsuto S, Reid JB, Fukami M, Yokota T (1999) Brassinosteroid/Sterol synthesis and plant growth as affected by lka and lkb mutations of Pea. Plant Physiol 119: 1517-1526CrossRefPubMedGoogle Scholar
  43. 43.
    Rouleau M, Marsolais F, Richard M, Nicolle L, Voigt B, Adam G, Varin L (1999) Inactivation of brassinosteroid biological activity by a salicylate- inducible steroid sulfotransferase from Brassica napus. J Biol Chem 274: 20925-20930CrossRefPubMedGoogle Scholar
  44. 44.
    Sakurai A, Fujioka S (1996) Catharanthus roseus (Vinca rosea): in vitro production of brassinosteroids. In YPS Bajaj, ed, Biotechnology in Agriculture and Forestry, Vol 37. Springer-Verlag Press, Berlin, pp 87-96Google Scholar
  45. 45.
    Schaeffer A, Bronner R, Benveniste P, Schaller H (2001) The ratio of campesterol to sitosterol that modulates growth in Arabidopsis is controlled by STEROL METHYLTRANSFERASE 2;1. Plant J 25: 605-615CrossRefPubMedGoogle Scholar
  46. 46.
    Schrick K, Mayer U, Horrichs A, Kuhnt C, Bellini C, Dangl J, Schmidt J, Jurgens G (2000) FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis. Genes Dev 14: 1471-1484PubMedGoogle Scholar
  47. 47.
    Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S, Yoshida S (2003) Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol 131: 287-297CrossRefPubMedGoogle Scholar
  48. 48.
    Souter M, Topping J, Pullen M, Friml J, Palme K, Hackett R, Grierson D, Lindsey K (2002) hydra Mutants of Arabidopsis are defective in sterol profiles and auxin and ethylene signaling. Plant Cell 14: 1017-1031CrossRefPubMedGoogle Scholar
  49. 49.
    Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Redei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450 controlling cell elongation and de-etiolation in Arabidopsis. Cell 85: 171-182CrossRefPubMedGoogle Scholar
  50. 50.
    Takatsuto S, Yazawa N, Ikegawa N, Takematsu T, Takeuchi Y, Koguchi M (1983) Structure-activity relationship of brassinosteroids. Phytochemistry 22: 2437-2441CrossRefGoogle Scholar
  51. 51.
    Thompson MJ, Meudt WJ, Mandava NB, Dutky SR, Lusby WR, Spaulding DW (1982) Synthesis of brassinosteroids and relationship of structure to plant growth- promoting effects. Steroids 39: 89-105CrossRefPubMedGoogle Scholar
  52. 52.
    Wang ZY, Nakano T, Gendron J, He J, Chen M, Vafeados D, Yang Y, Fujioka S, Yoshida S, Asami T, Chory J (2002) Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell 2: 505-513CrossRefPubMedGoogle Scholar
  53. 53.
    Yin Y, Wang ZY, Mora-Garcia S, Li J, Yoshida S, Asami T, Chory J (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109: 181-191CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.School of Biological SciencesCollege of Natural Sciences NS70, Seoul,National UniversitySeoulKorea

Personalised recommendations