Plant Hormones pp 717-740 | Cite as

Methods of Plant Hormone Analysis

  • Karin Ljung
  • Göran Sandberg
  • Thomas Moritz


The development of sensitive analytical methods1 for determining hormone levels in plant tissues is essential for elucidating the role and function of plant hormones in growth and development. During the last decade the trend has been to use mass spectrometry as one of the principal tools in plant hormone analysis, thereby increasing the quality of the analyses dramatically. The development of user-friendly bench-top mass spectrometers has revolutionized analytical chemistry, enabling many laboratories to switch from fairly unspecific bioassays and immunoassays to a methodology that can be both sensitive and accurate. Analysis of plant hormones is an essential component of studies of plant development, so the demands made on the methods used will often be linked to the questions asked by developmental biologists.


High Performance Liquid Chromatography Plant Hormone Select Reaction Monitoring Solid Phase Extraction Column Preparative High Performance Liquid Chromatography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Åstot C, Dolezal K, Moritz T, Sandberg G (1998) Precolumn derivatisation and capillary liquid chromatographic/frit-fast atom bombardment mass spectrometry analysis of cytokinins in Arabidopsis thaliana. J Mass Spectrom 33: 892-902CrossRefPubMedGoogle Scholar
  2. 2.
    Åstot C, Dolezal K, Nordström A, Wang Q, Kunkel T, Moritz T, Chua NH, Sandberg G (2000) An alternative cytokinin biosynthesis pathway. Proc Natl Acad Sci USA 97: 14778-14783CrossRefPubMedGoogle Scholar
  3. 3.
    Åstot C, Dolezal K, Moritz T, Sandberg G (2000) Deuterium in vivo labelling of cytokinins in Arabidopsis thaliana analysed by capillary liquid chromatography/frit-fast atom bombardment mass spectrometry. J Mass Spectrom 35: 13-22CrossRefPubMedGoogle Scholar
  4. 4.
    Avsian-Kretchmer O, Cheng J-C, Chen L, Moctezuma E, Sung, ZR (2002). Indole acetic acid distribution coincides with vascular differentiation pattern during Arabidopsis leaf ontogeny. Plant Physiol 139: 199-209CrossRefGoogle Scholar
  5. 5.
    Barlier I, Kowalczyk M, Marchant A, Ljung K, Bhalerao RP, Bennett M, Sandberg G, Bellini C (2000) The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proc Natl Sci USA 97: 14819-14824CrossRefGoogle Scholar
  6. 6.
    Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G. Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115: 591-602CrossRefPubMedGoogle Scholar
  7. 7.
    Bielesky RL (1964) The problem of halting enzyme action when extracting plant tissues. Anal Biochem 9: 431-442CrossRefGoogle Scholar
  8. 8.
    Birkemeyer C, Kolasa A, Kopka J (2003) Comprehensive chemical derivatisation for gas chromatography-mass spectrometry-based multi-targeted profiling of the major phytohormones. J Chromatogr A 993: 89-102CrossRefPubMedGoogle Scholar
  9. 9.
    Chapman JR (1993) Practical Organic Mass Spectrometry – A Guide for Chemical and Biochemical Analysis, Ed 2. John Wiley & Sons, Chichester, 330 ppGoogle Scholar
  10. 10.
    Chiwocha SD, Abrams SR, Ambrose SJ, Cutler AJ, Loewen M, Ross AR, Kermode AR (2003) A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J 35: 405-417CrossRefPubMedGoogle Scholar
  11. 11.
    Christensen B, Nielsen J (1999) Isotopomer analysis using GC/MS. Metabolic Engineering 1: 282-290CrossRefPubMedGoogle Scholar
  12. 12.
    Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49: 427-451CrossRefPubMedGoogle Scholar
  13. 13.
    Crozier A, Moritz T (1999) Physico-chemical methods of plant hormone analysis. In PJJ Hooykaas, MA Hall, KR Libbenga, eds, Biochemistry and Molecular Biology of Plant Hormones. Elsevier, Amsterdam, pp 23-60CrossRefGoogle Scholar
  14. 14.
    Dewitte W, Chiappetta A, Azmi A, Witters E, Strnad M, Rembur J, Noin M, Chriqui D, Van Onckelen H (1999) Dynamics of cytokinins in apical shoot meristems of a dayneutral tobacco during floral transition and flower formation. Plant Physiol 119:111-122CrossRefPubMedGoogle Scholar
  15. 15.
    Dinan L, Harmatha J, Lafont R (2001) Chromatographic procedures for the isolation of plant steroids. J Chromatogr A 935: 105-123CrossRefPubMedGoogle Scholar
  16. 16.
    Dobrev P, Kaminek M (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A 950: 21-29CrossRefPubMedGoogle Scholar
  17. 17.
    Duffield PH, Netting AG (2001) Methods for the quantitation of abscisic acid and its p recursors from plant tissues. Anal Biochem 289: 251-259CrossRefPubMedGoogle Scholar
  18. 18.
    Edlund A, Eklöf S, Sundberg B, Moritz T, Sandberg G (1995) A microscale technique for gas chromatography-mass spectrometry measurements of picogram amounts of indole-3-acetic acid in plant tissues. Plant Physiol 108: 1043-1047PubMedGoogle Scholar
  19. 19.
    Epstein E, Cohen JD, Bandurski RS (1980) Concentration and metabolic turnover of indoles in germinating kernels of Zea mays L. Plant Physiol 65: 415-421CrossRefPubMedGoogle Scholar
  20. 20.
    Faiss M, Zalibulova J, Strnad M, Schmuelling, T (1997) Conditional transgenic expression of the ipt gene indicates a function for cytokinins in paracrine signalling in whole tobacco plants. Plant J 12: 401-415CrossRefPubMedGoogle Scholar
  21. 21.
    Friml J, Benková E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jürgens G, Palme K (2002) AtPIN4 mediated sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108: 661-673CrossRefPubMedGoogle Scholar
  22. 22.
    Fujioka S, Noguchi T, Yokota T, Takatsuto S, Yoshida S (1998). Brassinosteroids in Arabidopsis thaliana. Phytochemistry 48: 595-599CrossRefPubMedGoogle Scholar
  23. 23.
    Gomez-Cadenas A, Pozo OJ, Garcia-Augustin P, Sancho JV (2002) Direct analysis of abscisic acid in crude plant extracts by liquid chromatography-electrospray/tandem mass spectrometry. Phytochem Anal 13: 228-34.CrossRefPubMedGoogle Scholar
  24. 24.
    Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49: 373-385CrossRefPubMedGoogle Scholar
  25. 25.
    Hall KC, Else MA, Jackson MB (1993) Determination of 1-aminocyclopropane-1- carboxylic acid (ACC) in leaf tissue and xylem sap using capillary column gas chromatography and a nitrogen/phosphorus detector. Plant Growth Regul 13: 225-230CrossRefGoogle Scholar
  26. 26.
    Hedden P (1993) Modern methods for the quantitative analysis of plant hormones. Annu Rev Plant Physiol Plant Mol Biol 44: 107-129CrossRefGoogle Scholar
  27. 27.
    Hoffman ED, Stroobant V (2002) Mass Spectrometry: Principles and Applications, Ed 2. John Wiley & Sons, Chichester, 420 ppGoogle Scholar
  28. 28.
    King RW, Moritz T, Evans LT, Junttila O, Herlt AJ (2001) Long-day induction of flowering in Lolium temulentum involves sequential increases in specific gibberellins at the shoot apex. Plant Physiol 127: 624-632CrossRefPubMedGoogle Scholar
  29. 29.
    Kowalczyk M, Sandberg G (2001) Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis. Plant Physiol 127: 1845-1853CrossRefPubMedGoogle Scholar
  30. 30.
    Linskens HF, Jackson JF (eds) (1986) Modern Methods of Plant Analysis Vol 3 – Gas Chromatography/Mass Spectrometry. Springer-Verlag, Berlin, 304 ppGoogle Scholar
  31. 31.
    Ljung K, Östin A, Lioussanne L, Sandberg G (2001) Developmental regulation of indole-3-acetic acid turnover in Scots pine seedlings. Plant Physiol 125: 464-475CrossRefPubMedGoogle Scholar
  32. 32.
    Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant Journal 28: 465-474CrossRefPubMedGoogle Scholar
  33. 33.
    Miller J, Miller JN (2000) Statistics and Chemometrics for Analytical Chemistry, Ed 4. Prentice Hall, New York, 288 ppGoogle Scholar
  34. 34.
    Moritz T, Olsen JE (1995) Comparison between high-resolution selected ion monitoring, selected reaction monitoring, and four-sector tandem mass spectrometry in quantitative analysis of gibberellins in milligram amounts of plant tissue. Anal Chem 67: 1711-1716CrossRefGoogle Scholar
  35. 35.
    Moritz T (1996) Mass spectrometry of plant hormones. In RP Newton, TJ Walton, eds, Applications of Modern Mass Spectrometry in Plant Science Research. Clarendon Press, Oxford, pp 139-158Google Scholar
  36. 36.
    Müller A, Düchting P, Weiler EW (2002) A multiplex GC/MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its applications to Arabidopsis thaliana. Planta 216: 44-56CrossRefPubMedGoogle Scholar
  37. 36a.
    Nordstrom A, Tarkowski P, Tarkowska D, Dolezal K, Astot C, Sandberg G, Moritz T (2004) Derivatization for LC-electrospray ionization-MS: A tool for improving reversed-phase separation and ESI responses of bases, ribosides, and intact nucleotides. Anal Chem 76: 2869-2877CrossRefPubMedGoogle Scholar
  38. 37.
    Normanly J, Cohen JD, Fink GF (1993) Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proc Natl Acad Sci USA 90: 10355-10359CrossRefPubMedGoogle Scholar
  39. 38.
    Östin A, Catala C, Chamarro J, Sandberg G (1995) Identification of glucopyranosylbeta- 1, 4-glucopyranosyl-beta-1-N-oxindole-3-acetyl-N-aspartic acid, a new IAA catabolite, by liquid chromatography tandem mass spectrometry. J Mass Spectrom 30: 1007-1017CrossRefGoogle Scholar
  40. 39.
    Östin A, Kowalczyk M, Bhalerao RP, Sandberg G (1998) Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiol 118: 285-296CrossRefPubMedGoogle Scholar
  41. 40.
    Prinsen E, Van Dongen W, Esmans EL, Van Onckelen HA (1998) Micro and capillary liquid chromatography-tandem mass spectrometry: a new dimension in phytohormone research. J Chromatogr A 826: 25-37CrossRefGoogle Scholar
  42. 41.
    Rapparini F, Cohen JD, Slovin JP (1999) Indole-3-acetic acid biosynthesis in Lemna gibba studied using stable isotope labeled anthranilate and tryptophan. Plant Growth Regulation 27: 139-144CrossRefGoogle Scholar
  43. 42.
    Reeve DR, Crozier A (1980) In J MacMillan, ed, Encyclopedia of Plant Physiology, Vol 9. Springer, Heidelberg, p.203Google Scholar
  44. 43.
    Ribnicky DM, Cooke TJ, Cohen JD (1998) A microtechnique for the analysis of free and conjugated indole-3-acetic acid in milligram amounts of plant tissue using a benchtop gas chromatograph-mass spectrometer. Planta 204: 1-7CrossRefPubMedGoogle Scholar
  45. 44.
    Rivier L, Crozier A. (eds) (1987) Principles and Practice of Plant Hormone Analysis, Vol 1 and 2. Academic Press, London, 401 ppGoogle Scholar
  46. 45.
    Rosenblatt J, Chinkes D, Wolfe M, Wolfe RR (1992) Stable isotope tracer analysis by GC/MS, including quantification of isotopomer effects. Am J Physiol 263: E584-E596PubMedGoogle Scholar
  47. 46.
    Sandberg G, Crozier A, Ernstsen A (1987) Indole-3-acetic acid and related compounds. In L Rivier, A Crozier, eds, Principles and Practice of Plant Hormone Analysis, Vol 2. Academic Press, London, pp 169-302Google Scholar
  48. 46a.
    Schmelz EA, Engelberth J, Alborn HT, O'Donnell P, Sammons M, Toshima H, Tumlinson JH 3rd (2003) Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proc Natl Acad Sci USA 100: 10552-10557CrossRefPubMedGoogle Scholar
  49. 47.
    Schneider G, Schmidt J (1996) Liquid chromatography-electrospray ionization mass spectrometry for analysing plant hormone conjugates. J Chromatogr A 728: 371-375CrossRefGoogle Scholar
  50. 48.
    Shimada Y, Goad H, Nakamura A, Takatsuto S, Fujioka S, Yoshida S (2003) Organspecific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol 131: 287-297CrossRefPubMedGoogle Scholar
  51. 49.
    Smets R, Claes V, Van Onckelen HA, Prinsen E (2003) Extraction and quantitative analysis of 1-aminocyclopropane-1-carboxylic acid in plant tissue by gas chromatography coupled to mass spectrometry. J Chromatogr A 993: 79-87CrossRefPubMedGoogle Scholar
  52. 50.
    Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001). Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev 15: 2648-2653CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesSweden

Personalised recommendations