Skip to main content

The Transport of Auxins

  • Chapter
Plant Hormones

Abstract

Auxins play a crucial role in the regulation of spatial and temporal aspects of plant growth and development1. As well as being required for the division, enlargement and differentiation of individual plant cells, auxins also function as signals between cells, tissues and organs. In this way they contribute to the coordination and integration of growth and development in the whole plant and to physiological responses of plants to environmental cues (63). At the individual cell level, fast changes or pulses in hormone concentration may function to initiate or to terminate a developmental process. In contrast, the maintenance of a stable concentration of the hormone (homeostasis) may be necessary to maintain the progress of a developmental event that has already been initiated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baker DA (2000) Long-distance vascular transport of endogenous hormones in plants and their role in source:sink regulation. Israel J. Plant Sci 48: 199-203

    CAS  Google Scholar 

  2. Benjamins R, Quint A, Weijers D, Hooykaas P, Offringa R (2001) The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128: 4057-4067

    CAS  PubMed  Google Scholar 

  3. Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273: 948-950

    Article  CAS  PubMed  Google Scholar 

  4. Bennett MJ, Marchant A, May ST, Swarup R (1998) Going the distance with auxin: unravelling the molecular basis of auxin transport. Philos Trans R Soc Lond B Biol Sci 353: 1511-1515

    Article  CAS  PubMed  Google Scholar 

  5. Berleth T, Jürgens G (1993) The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo. Development 118: 575–587

    Google Scholar 

  6. Berleth T, Mattsson J, Hardtke CS (2000) Vascular continuity, cell axialisation and auxin. Plant Growth Regul 32: 173-185

    Article  CAS  Google Scholar 

  7. Berleth T, Sachs T (2001) Plant morphogenesis: long-distance coordination and local patterning. Curr Opin Plant Biol 4: 57-62

    Article  CAS  PubMed  Google Scholar 

  8. Bernasconi P, Patel BC, Reagan JD, Subramanian MV (1996) The N-1-naphthylphthalamic acid-binding protein is an integral membrane protein. Plant Physiol 111: 427-432

    CAS  PubMed  Google Scholar 

  9. Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126: 524–535

    Article  CAS  PubMed  Google Scholar 

  10. Cambridge AP, Morris DA (1996) Transfer of exogenous auxin from the phloem to the polar auxin transport pathway in pea (Pisum sativum L). Planta 199: 583-588

    Article  CAS  Google Scholar 

  11. Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inze D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13: 843-852

    Article  CAS  PubMed  Google Scholar 

  12. Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson PH (1998) The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci USA 95: 15112-15117

    Article  CAS  PubMed  Google Scholar 

  13. Christensen SK, Dagenais N, Chory J, Weigel D (2000) Regulation of auxin response by the protein kinase PINOID. Cell 100: 469–478

    Article  CAS  PubMed  Google Scholar 

  14. Davies PJ, Mitchell EK (1972) Transport of indoleacetic acid in intact roots of Phaseolus coccineus. Planta 105: 139-154

    Article  CAS  Google Scholar 

  15. Davies PJ, Rubery PH (1978) Components of auxin transport in stem segments of Pisum sativum L. Planta 142: 211-219

    Article  CAS  Google Scholar 

  16. Delbarre A, Muller P, Guern J (1998) Short-lived and phosphorylated proteins contribute to carrier-mediated efflux, but not to influx, of auxin in suspension-cultured tobacco cells. Plant Physiol 116: 833-844

    Article  CAS  PubMed  Google Scholar 

  17. Delbarre A, Muller P, Imhoff V, Guern J (1996) Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198: 532-541

    Article  CAS  Google Scholar 

  18. Entchev EV, González-Gaitán MA (2002) Morphogen gradient formation and vesicular trafficking. Traffic 3: 98-109

    Article  CAS  PubMed  Google Scholar 

  19. Friml J (2003) Auxin transport – shaping the plant. Curr Opin Plant Biol 6: 7-12

    Article  CAS  PubMed  Google Scholar 

  20. Friml J, Benková E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jürgens G, Palme K (2002) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108: 661-673

    Article  CAS  PubMed  Google Scholar 

  21. Friml J, Benková E, Mayer U, Palme K, Muster G (2003) Automated whole mount localisation techniques for plant seedlings. Plant J 34: 115-124

    Article  CAS  PubMed  Google Scholar 

  22. Friml J, Palme K (2002) Polar auxin transport - old questions and new concepts? Plant Mol Biol 49: 273-284

    Article  CAS  PubMed  Google Scholar 

  23. Friml J, Wisniewska J, Benková E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415: 806-809

    PubMed  Google Scholar 

  24. Fujita H, Syono K (1997) PIS1, a negative regulator of the action of auxin transport inhibitors in Arabidopsis thaliana. Plant J 12: 583-595

    Article  CAS  PubMed  Google Scholar 

  25. Gaedeke N, Klein M, Kolukisaoglu U, Forestier C, Müller A, Ansorge M, Becker D, Mamnun Y, Kuchler K, Schulz B, Mueller-Roeber B, Martinoia E (2001) The Arabidopsis thaliana ABC transporter AtMRP5 controls root development and stomata movement. EMBO J 20: 1875-1887

    Article  CAS  PubMed  Google Scholar 

  26. Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282: 2226-2230

    Article  PubMed  Google Scholar 

  27. Garbers C, DeLong A, Deruère J, Bernasconi P, Söll D (1996) A mutation in protein phosphatase 2A regulatory subunit affects auxin transport in Arabidopsis. EMBO J 15: 2115-2124

    CAS  PubMed  Google Scholar 

  28. Geelen DNV, Inzé D (2001) A bright future for the Bright Yellow-2 cell culture. Plant Physiol 127: 1375-1379

    Article  CAS  PubMed  Google Scholar 

  29. Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112: 219–230

    Article  CAS  PubMed  Google Scholar 

  30. Geldner N, Friml J, Stierhof Y-D, Jürgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413: 425-428

    Article  CAS  PubMed  Google Scholar 

  31. Geldner N, Hamann T, Jürgens G (2000) Is there a role for auxin in early embryogensis? Plant Growth Regul 32: 187-191

    Article  CAS  Google Scholar 

  32. Gil P, Dewey E, Friml J, Zhao Y, Snowden KC, Putterill J, Palme K, Estelle M, Chory J (2001) BIG: a calossin-like protein required for polar auxin transport in Arabidopsis. Genes Dev 15: 1985-1997

    Article  CAS  PubMed  Google Scholar 

  33. Goldsmith MHM (1977) The polar transport of auxin. Annu Rev Plant Physiol 28: 439-478

    Article  CAS  Google Scholar 

  34. Grebe M, Friml J, Swarup R, Ljung K, Sandberg G, Terlou M, Palme K, Bennett MJ, Scheres B (2002) Cell polarity signaling in Arabidopsis involves a BFA-sensitive auxin influx pathway. Curr Biol 12: 329-334

    Article  CAS  PubMed  Google Scholar 

  35. Hadfi K, Speth V, Neuhaus G (1998) Auxin-induced developmental patterns in Brassica juncea embryos. Development 125: 879-887

    CAS  PubMed  Google Scholar 

  36. Hertel R (1983) The mechanism of auxin transport as a model for auxin action. Z Pflanzenphysiol 112: 53-67

    CAS  Google Scholar 

  37. Hertel R, Leopold AC (1963) Versuche zur Analyses des Auxintransports in der Koleoptile von Zea mays L. Planta 59: 535-562

    Article  CAS  Google Scholar 

  38. Hobbie LJ (1998) Auxin: Molecular genetic approaches in Arabidopsis. Plant Physiol Biochem 36: 91-102

    Article  CAS  Google Scholar 

  39. Imhoff V, Muller P, Guern J, Delbarre A (2000) Inhibitors of the carrier-mediated influx of auxin in suspension-cultured tobacco cells. Planta 210: 580-588

    Article  CAS  PubMed  Google Scholar 

  40. Jacobs M, Gilbert SF (1983) Basal localization of the presumptive auxin transport carrier in pea stem cells. Science 220: 1297-1300

    Article  CAS  PubMed  Google Scholar 

  41. Jacobs M, Rubery PH (1988) Naturally occurring auxin transport regulators. Science 241: 346-349

    Article  CAS  PubMed  Google Scholar 

  42. Kaldewey H (1984) Transport and other modes of movement of hormones (mainly auxins). In TK Scott, ed, Encyclopedia of Plant Physiology, New Series, Vol 10, Hormonal Regulation of Development II. Springer-Verlag, Berlin, Heidelberg, pp 80-148

    Google Scholar 

  43. Kerk N, Feldman L (1994) The quiescent centre in roots of maize - initiation, maintenance, and role in organization of the root apical meristem. Protoplasma 183: 100-106

    Article  CAS  Google Scholar 

  44. Lachaud S, Bonnemain JL (1982) Xylogénèse chez les dicotylédones arborescentes. III. Transport de l’auxine et activité cambiale dans les jeunes tiges de Hêtre. Can J Bot 60: 869-876

    Article  CAS  Google Scholar 

  45. Lalonde S, Boles E, Hellmann H, Barker L, Patrick JW, Frommer WB, Ward JM (1999) The dual function of sugar carriers: transport and sugar sensing. Plant Cell 11: 707-726

    Article  CAS  PubMed  Google Scholar 

  46. Lincoln C, Britton JH, Estelle M (1990) Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2: 1071–1080

    Article  CAS  PubMed  Google Scholar 

  47. Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28: 465-474

    Article  CAS  PubMed  Google Scholar 

  48. Lomax TL, Muday GK, Rubery PH (1995) Auxin transport. In PJ Davies ed, Plant Hormones: Physiology, Biochemistry and Molecular Biology, Ed 2. Kluwer Academic Publishers, Dordrecht, Boston, London, pp 509-530

    Google Scholar 

  49. Luschnig C (2001) Auxin transport: Why plants like to think BIG. Curr Biol 11: R831-R833

    Article  CAS  PubMed  Google Scholar 

  50. Luschnig C (2002) Auxin transport: ABC proteins join the club. Trends Plant Sci 7: 329-332

    Article  CAS  PubMed  Google Scholar 

  51. Luschnig C, Gaxiola RA, Grisafi P, Fink GR (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev 12: 2175-2187

    Article  CAS  PubMed  Google Scholar 

  52. Maher EP, Martindale SJB (1980) Mutants of Arabidopsis thaliana with altered responses to auxins and gravity. Biochem Genet 18: 1041–1053

    Article  CAS  PubMed  Google Scholar 

  53. Marchant A, Kargul J, May ST, Muller P, Delbarre A, Perrot-Rechenmann C, Bennett MJ (1999) AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J 18: 2066-2073

    Article  CAS  PubMed  Google Scholar 

  54. Martinoia E, Klein M, Geisler M, Bovet L, Forestier C, Kolukisaoglu Ü, Müller-Röber B, Schulz B (2002) Multifunctionality of plant ABC transporters – more than just detoxifiers. Planta 214: 345-355

    Article  CAS  PubMed  Google Scholar 

  55. Mattsson J, Ckurshumova W, Berleth T (2003) Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol 131: 1327-1339

    Article  CAS  PubMed  Google Scholar 

  56. Mattsson J, Sung ZR, Berleth T (1999) Responses of plant vascular systems to auxin transport inhibition. Development 126: 2979-2991

    CAS  PubMed  Google Scholar 

  57. Mayer U, Ruiz RAT, Berleth T, Misera S, Jürgens G (1991) Mutations affecting body organization in the Arabidopsis embryo. Nature 353: 402-407

    Article  Google Scholar 

  58. Morris DA (1996) Hormonal regulation of source-sink relationships: an overview of potential control mechanisms. In E Zamski, AA Schaffer eds, Photoassimilate distribution in plants and crops. Marcel Dekker Inc, New York, Basel, Hong Kong, pp 441-465

    Google Scholar 

  59. Morris DA (2000) Transmembrane auxin carrier systems - dynamic regulators of polar auxin transport. Plant Growth Regul 32: 161-172

    Article  CAS  PubMed  Google Scholar 

  60. Morris DA, Robinson JS (1998) Targeting of auxin carriers to the plasma membrane: differential effects of brefeldin A on the traffic of auxin uptake and efflux carriers. Planta 205: 606-612

    Article  CAS  Google Scholar 

  61. Morris DA, Rubery PH, Jarman J, Sabater M (1991) Effects of inhibitors of protein synthesis on transmembrane auxin transport in Cucurbita pepo L. hypocotyl segments. J Exp Bot 42: 773-783

    Article  CAS  Google Scholar 

  62. Morris DA, Thomas AG (1978) A microautoradiographic study of auxin transport in the stem of intact pea seedlings (Pisum sativum L.). J Exp Bot 29: 147-157

    Article  CAS  Google Scholar 

  63. Muday GK, DeLong A (2001) Polar auxin transport: controlling where and how much. Trends Plant Sci 6: 535-542

    Article  CAS  PubMed  Google Scholar 

  64. Muday GK, Murphy AS (2002) An emerging model of auxin transport regulation. Plant Cell 14: 293-299

    Article  CAS  PubMed  Google Scholar 

  65. Müller A, Guan C, Gälweiler L, Tänzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J 17: 6903-6911

    Article  PubMed  Google Scholar 

  66. Murphy AS, Hoogner KR, Peer WA, Taiz L (2002) Identification, purification and molecular cloning of N-1-naphthylphthalamic acid-binding plasma membrane-associated aminopeptidases from Arabidopsis. Plant Physiol 128: 935-950

    Article  CAS  PubMed  Google Scholar 

  67. Murphy A, Peer WA, Taiz L (2000) Regulation of auxin transport by aminopeptidases and endogenous flavonoids. Planta 211: 315-324

    Article  CAS  PubMed  Google Scholar 

  68. Noh B, Murphy AS, Spalding EP (2001) Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13: 2441-2454

    Article  CAS  PubMed  Google Scholar 

  69. Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y (1991) Requirement of the auxin polar transport system in the early stages of Arabidopsis floral bud formation. Plant Cell 3: 677-684

    Article  CAS  PubMed  Google Scholar 

  70. Palme K, Gälweiler L (1999) PIN-pointing the molecular basis of auxin transport. Curr Opin Plant Biol 2: 375–381

    Article  CAS  PubMed  Google Scholar 

  71. Parry G, Delbarre A, Marchant A, Swarup R, Napier R, Perrot-Rechenmann C, Bennett MJ (2001) Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant J 25: 399-406

    Article  CAS  PubMed  Google Scholar 

  72. Petrášek J, Černá A, Schwarzerová K, Elčkner M, Morris DA, Zažímalová E (2003) Do phytotropins inhibit auxin efflux by impairing vesicle traffic? Plant Physiol 131: 254-263

    Article  PubMed  Google Scholar 

  73. Petrášek J, Elčkner M, Morris DA, Zažímalová E (2002) Auxin efflux carrier activity and auxin accumulation regulate cell division and polarity in tobacco cells. Planta 216: 302-308

    Article  PubMed  Google Scholar 

  74. Rashotte AM, Brady SR, Reed RC, Ante SJ, Muday GK (2000) Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol 122: 481-490

    Article  CAS  PubMed  Google Scholar 

  75. Rashotte AM, DeLong A, Muday GK (2001) Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth. Plant Cell 13: 1683-1697

    Article  CAS  PubMed  Google Scholar 

  76. Raven JA (1975) Transport of indoleacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol 74: 163-172

    Article  CAS  Google Scholar 

  77. Robinson JS, Albert AC, Morris DA (1999) Differential effects of brefeldin A and cycloheximide on the activity of auxin efflux carriers in Cucurbita pepo L. J Plant Physiol 155: 678-684

    CAS  Google Scholar 

  78. Rubery PH (1990) Phytotropins: receptors and endogenous ligands. Symp Soc Exp Biol 44: 119-146

    CAS  PubMed  Google Scholar 

  79. Rubery PH, Sheldrake AR (1974) Carrier-mediated auxin transport. Planta 188: 101-121

    Article  Google Scholar 

  80. Ruegger M, Dewey E, Hobbie L, Brown D, Bernasconi P, Turner J, Muday G, Estelle M (1997) Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell 9: 745-757

    Article  CAS  PubMed  Google Scholar 

  81. Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99: 463-472

    Article  CAS  PubMed  Google Scholar 

  82. Sachs T (2000) Integrating cellular and organismic aspects of vascular differentiation. Plant Cell Physiol 41: 649-656

    CAS  PubMed  Google Scholar 

  83. Schrick K, Mayer U, Martin G, Bellini C, Kuhnt C, Schmidt J, Jürgens G (2002) Interactions between sterol biosynthesis genes in embryonic development of Arabidopsis. Plant J 31: 61-73

    Article  CAS  PubMed  Google Scholar 

  84. Shi L, Miller I, Moore R (1993) Immunocytochemical localization of indole-3-acetic acid in primary roots of Zea mays. Plant Cell Environ. 16: 967-973

    Article  CAS  Google Scholar 

  85. Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Gälweiler L, Palme K, Jürgens G (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286: 316-318

    Article  CAS  PubMed  Google Scholar 

  86. Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001) Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev 15: 2648-2653

    Article  CAS  PubMed  Google Scholar 

  87. Swarup R, Marchant A, Bennett MJ (2000) Auxin transport: providing a sense of direction during plant development. Biochem Soc T 28: 481-485

    Article  CAS  Google Scholar 

  88. Swarup R, Parry G, Graham N, Allen T, Bennett M (2002) Auxin cross-talk: integration of signalling pathways to control plant development. Plant Mol Biol 49: 411–426

    Article  CAS  PubMed  Google Scholar 

  89. Uggla C, Mellerowicz EJ, Sundberg B (1998) Indole-3-acetic acid controls cambial growth in Scots pine by positional signaling. Plant Physiol 117: 113-121

    Article  CAS  PubMed  Google Scholar 

  90. Utsuno K, Shikanai T, Yamada Y, Hashimoto T (1998) AGR, an Agravitropic locus of Arabidopsis thaliana, encodes a novel membrane-protein family member. Plant Cell Physiol 39: 1111–1118

    CAS  PubMed  Google Scholar 

  91. Vandenbussche F, Smalle J, Le J, Saibo NJM, De Paepe A, Chaerle L, Tietz O, Smets R, Laarhoven LJJ, Harren FJM, Van Onckelen H, Palme K, Verbelen J-P, Van Der Straeten D (2003) The Arabidopsis mutant alh1 illustrates a cross talk between ethylene and auxin. Plant Physiol 131: 1228-1238

    Article  CAS  PubMed  Google Scholar 

  92. Vissenberg K, Feijó JA, Weisenseel MH, Verbelen J-P (2001) Ion fluxes, auxin and the induction of elongation growth in Nicotiana tabacum cells. J Exp Bot 52: 2161-2167

    CAS  PubMed  Google Scholar 

  93. Vogler H, Kuhlemeier C (2003) Simple hormones but complex signalling. Curr Opin Plant Biol 6: 51-56

    Article  CAS  PubMed  Google Scholar 

  94. Went FW (1974) Reflections and speculations. Annu Rev Plant Physiol 25: 1-26

    Article  CAS  Google Scholar 

  95. Willemsen V, Friml J, Grebe M, van den Toorn A, Palme K, Scheres B (2003) Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function. Plant Cell 15: 612-625

    Article  CAS  PubMed  Google Scholar 

  96. Yamamoto M, Yamamoto KT (1998) Differential effects of 1-naphthaleneacetic acid, indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid on the gravitropic response of roots in an auxin-resistant mutant of Arabidopsis, aux1. Plant Cell Physiol 39: 660-664

    CAS  PubMed  Google Scholar 

  97. Zazimalova E, Napier RM (2003) Points of regulation for auxin action. Plant Cell Rep 21: 625-634

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Morris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Morris, D.A., Friml, J., Zažímalová, E. (2010). The Transport of Auxins. In: Davies, P.J. (eds) Plant Hormones. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2686-7_21

Download citation

Publish with us

Policies and ethics