Plant Hormones pp 451-484 | Cite as

The Transport of Auxins

  • David A. Morris
  • Jiří Friml
  • Eva Zažímalová


Auxins play a crucial role in the regulation of spatial and temporal aspects of plant growth and development1. As well as being required for the division, enlargement and differentiation of individual plant cells, auxins also function as signals between cells, tissues and organs. In this way they contribute to the coordination and integration of growth and development in the whole plant and to physiological responses of plants to environmental cues (63). At the individual cell level, fast changes or pulses in hormone concentration may function to initiate or to terminate a developmental process. In contrast, the maintenance of a stable concentration of the hormone (homeostasis) may be necessary to maintain the progress of a developmental event that has already been initiated.


Auxin Transport Polar Auxin Transport Polar Transport Auxin Efflux Auxin Transport Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker DA (2000) Long-distance vascular transport of endogenous hormones in plants and their role in source:sink regulation. Israel J. Plant Sci 48: 199-203Google Scholar
  2. 2.
    Benjamins R, Quint A, Weijers D, Hooykaas P, Offringa R (2001) The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128: 4057-4067PubMedGoogle Scholar
  3. 3.
    Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273: 948-950CrossRefPubMedGoogle Scholar
  4. 4.
    Bennett MJ, Marchant A, May ST, Swarup R (1998) Going the distance with auxin: unravelling the molecular basis of auxin transport. Philos Trans R Soc Lond B Biol Sci 353: 1511-1515CrossRefPubMedGoogle Scholar
  5. 5.
    Berleth T, Jürgens G (1993) The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo. Development 118: 575–587Google Scholar
  6. 6.
    Berleth T, Mattsson J, Hardtke CS (2000) Vascular continuity, cell axialisation and auxin. Plant Growth Regul 32: 173-185CrossRefGoogle Scholar
  7. 7.
    Berleth T, Sachs T (2001) Plant morphogenesis: long-distance coordination and local patterning. Curr Opin Plant Biol 4: 57-62CrossRefPubMedGoogle Scholar
  8. 8.
    Bernasconi P, Patel BC, Reagan JD, Subramanian MV (1996) The N-1-naphthylphthalamic acid-binding protein is an integral membrane protein. Plant Physiol 111: 427-432PubMedGoogle Scholar
  9. 9.
    Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126: 524–535CrossRefPubMedGoogle Scholar
  10. 10.
    Cambridge AP, Morris DA (1996) Transfer of exogenous auxin from the phloem to the polar auxin transport pathway in pea (Pisum sativum L). Planta 199: 583-588CrossRefGoogle Scholar
  11. 11.
    Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inze D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13: 843-852CrossRefPubMedGoogle Scholar
  12. 12.
    Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson PH (1998) The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci USA 95: 15112-15117CrossRefPubMedGoogle Scholar
  13. 13.
    Christensen SK, Dagenais N, Chory J, Weigel D (2000) Regulation of auxin response by the protein kinase PINOID. Cell 100: 469–478CrossRefPubMedGoogle Scholar
  14. 14.
    Davies PJ, Mitchell EK (1972) Transport of indoleacetic acid in intact roots of Phaseolus coccineus. Planta 105: 139-154CrossRefGoogle Scholar
  15. 15.
    Davies PJ, Rubery PH (1978) Components of auxin transport in stem segments of Pisum sativum L. Planta 142: 211-219CrossRefGoogle Scholar
  16. 16.
    Delbarre A, Muller P, Guern J (1998) Short-lived and phosphorylated proteins contribute to carrier-mediated efflux, but not to influx, of auxin in suspension-cultured tobacco cells. Plant Physiol 116: 833-844CrossRefPubMedGoogle Scholar
  17. 17.
    Delbarre A, Muller P, Imhoff V, Guern J (1996) Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198: 532-541CrossRefGoogle Scholar
  18. 18.
    Entchev EV, González-Gaitán MA (2002) Morphogen gradient formation and vesicular trafficking. Traffic 3: 98-109CrossRefPubMedGoogle Scholar
  19. 19.
    Friml J (2003) Auxin transport – shaping the plant. Curr Opin Plant Biol 6: 7-12CrossRefPubMedGoogle Scholar
  20. 20.
    Friml J, Benková E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jürgens G, Palme K (2002) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108: 661-673CrossRefPubMedGoogle Scholar
  21. 21.
    Friml J, Benková E, Mayer U, Palme K, Muster G (2003) Automated whole mount localisation techniques for plant seedlings. Plant J 34: 115-124CrossRefPubMedGoogle Scholar
  22. 22.
    Friml J, Palme K (2002) Polar auxin transport - old questions and new concepts? Plant Mol Biol 49: 273-284CrossRefPubMedGoogle Scholar
  23. 23.
    Friml J, Wisniewska J, Benková E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415: 806-809PubMedGoogle Scholar
  24. 24.
    Fujita H, Syono K (1997) PIS1, a negative regulator of the action of auxin transport inhibitors in Arabidopsis thaliana. Plant J 12: 583-595CrossRefPubMedGoogle Scholar
  25. 25.
    Gaedeke N, Klein M, Kolukisaoglu U, Forestier C, Müller A, Ansorge M, Becker D, Mamnun Y, Kuchler K, Schulz B, Mueller-Roeber B, Martinoia E (2001) The Arabidopsis thaliana ABC transporter AtMRP5 controls root development and stomata movement. EMBO J 20: 1875-1887CrossRefPubMedGoogle Scholar
  26. 26.
    Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282: 2226-2230CrossRefPubMedGoogle Scholar
  27. 27.
    Garbers C, DeLong A, Deruère J, Bernasconi P, Söll D (1996) A mutation in protein phosphatase 2A regulatory subunit affects auxin transport in Arabidopsis. EMBO J 15: 2115-2124PubMedGoogle Scholar
  28. 28.
    Geelen DNV, Inzé D (2001) A bright future for the Bright Yellow-2 cell culture. Plant Physiol 127: 1375-1379CrossRefPubMedGoogle Scholar
  29. 29.
    Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112: 219–230CrossRefPubMedGoogle Scholar
  30. 30.
    Geldner N, Friml J, Stierhof Y-D, Jürgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413: 425-428CrossRefPubMedGoogle Scholar
  31. 31.
    Geldner N, Hamann T, Jürgens G (2000) Is there a role for auxin in early embryogensis? Plant Growth Regul 32: 187-191CrossRefGoogle Scholar
  32. 32.
    Gil P, Dewey E, Friml J, Zhao Y, Snowden KC, Putterill J, Palme K, Estelle M, Chory J (2001) BIG: a calossin-like protein required for polar auxin transport in Arabidopsis. Genes Dev 15: 1985-1997CrossRefPubMedGoogle Scholar
  33. 33.
    Goldsmith MHM (1977) The polar transport of auxin. Annu Rev Plant Physiol 28: 439-478CrossRefGoogle Scholar
  34. 34.
    Grebe M, Friml J, Swarup R, Ljung K, Sandberg G, Terlou M, Palme K, Bennett MJ, Scheres B (2002) Cell polarity signaling in Arabidopsis involves a BFA-sensitive auxin influx pathway. Curr Biol 12: 329-334CrossRefPubMedGoogle Scholar
  35. 35.
    Hadfi K, Speth V, Neuhaus G (1998) Auxin-induced developmental patterns in Brassica juncea embryos. Development 125: 879-887PubMedGoogle Scholar
  36. 36.
    Hertel R (1983) The mechanism of auxin transport as a model for auxin action. Z Pflanzenphysiol 112: 53-67Google Scholar
  37. 37.
    Hertel R, Leopold AC (1963) Versuche zur Analyses des Auxintransports in der Koleoptile von Zea mays L. Planta 59: 535-562CrossRefGoogle Scholar
  38. 38.
    Hobbie LJ (1998) Auxin: Molecular genetic approaches in Arabidopsis. Plant Physiol Biochem 36: 91-102CrossRefGoogle Scholar
  39. 39.
    Imhoff V, Muller P, Guern J, Delbarre A (2000) Inhibitors of the carrier-mediated influx of auxin in suspension-cultured tobacco cells. Planta 210: 580-588CrossRefPubMedGoogle Scholar
  40. 40.
    Jacobs M, Gilbert SF (1983) Basal localization of the presumptive auxin transport carrier in pea stem cells. Science 220: 1297-1300CrossRefPubMedGoogle Scholar
  41. 41.
    Jacobs M, Rubery PH (1988) Naturally occurring auxin transport regulators. Science 241: 346-349CrossRefPubMedGoogle Scholar
  42. 42.
    Kaldewey H (1984) Transport and other modes of movement of hormones (mainly auxins). In TK Scott, ed, Encyclopedia of Plant Physiology, New Series, Vol 10, Hormonal Regulation of Development II. Springer-Verlag, Berlin, Heidelberg, pp 80-148Google Scholar
  43. 43.
    Kerk N, Feldman L (1994) The quiescent centre in roots of maize - initiation, maintenance, and role in organization of the root apical meristem. Protoplasma 183: 100-106CrossRefGoogle Scholar
  44. 44.
    Lachaud S, Bonnemain JL (1982) Xylogénèse chez les dicotylédones arborescentes. III. Transport de l’auxine et activité cambiale dans les jeunes tiges de Hêtre. Can J Bot 60: 869-876CrossRefGoogle Scholar
  45. 45.
    Lalonde S, Boles E, Hellmann H, Barker L, Patrick JW, Frommer WB, Ward JM (1999) The dual function of sugar carriers: transport and sugar sensing. Plant Cell 11: 707-726CrossRefPubMedGoogle Scholar
  46. 46.
    Lincoln C, Britton JH, Estelle M (1990) Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2: 1071–1080CrossRefPubMedGoogle Scholar
  47. 47.
    Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28: 465-474CrossRefPubMedGoogle Scholar
  48. 48.
    Lomax TL, Muday GK, Rubery PH (1995) Auxin transport. In PJ Davies ed, Plant Hormones: Physiology, Biochemistry and Molecular Biology, Ed 2. Kluwer Academic Publishers, Dordrecht, Boston, London, pp 509-530Google Scholar
  49. 49.
    Luschnig C (2001) Auxin transport: Why plants like to think BIG. Curr Biol 11: R831-R833CrossRefPubMedGoogle Scholar
  50. 50.
    Luschnig C (2002) Auxin transport: ABC proteins join the club. Trends Plant Sci 7: 329-332CrossRefPubMedGoogle Scholar
  51. 51.
    Luschnig C, Gaxiola RA, Grisafi P, Fink GR (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev 12: 2175-2187CrossRefPubMedGoogle Scholar
  52. 52.
    Maher EP, Martindale SJB (1980) Mutants of Arabidopsis thaliana with altered responses to auxins and gravity. Biochem Genet 18: 1041–1053CrossRefPubMedGoogle Scholar
  53. 53.
    Marchant A, Kargul J, May ST, Muller P, Delbarre A, Perrot-Rechenmann C, Bennett MJ (1999) AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J 18: 2066-2073CrossRefPubMedGoogle Scholar
  54. 54.
    Martinoia E, Klein M, Geisler M, Bovet L, Forestier C, Kolukisaoglu Ü, Müller-Röber B, Schulz B (2002) Multifunctionality of plant ABC transporters – more than just detoxifiers. Planta 214: 345-355CrossRefPubMedGoogle Scholar
  55. 55.
    Mattsson J, Ckurshumova W, Berleth T (2003) Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol 131: 1327-1339CrossRefPubMedGoogle Scholar
  56. 56.
    Mattsson J, Sung ZR, Berleth T (1999) Responses of plant vascular systems to auxin transport inhibition. Development 126: 2979-2991PubMedGoogle Scholar
  57. 57.
    Mayer U, Ruiz RAT, Berleth T, Misera S, Jürgens G (1991) Mutations affecting body organization in the Arabidopsis embryo. Nature 353: 402-407CrossRefGoogle Scholar
  58. 58.
    Morris DA (1996) Hormonal regulation of source-sink relationships: an overview of potential control mechanisms. In E Zamski, AA Schaffer eds, Photoassimilate distribution in plants and crops. Marcel Dekker Inc, New York, Basel, Hong Kong, pp 441-465Google Scholar
  59. 59.
    Morris DA (2000) Transmembrane auxin carrier systems - dynamic regulators of polar auxin transport. Plant Growth Regul 32: 161-172CrossRefPubMedGoogle Scholar
  60. 60.
    Morris DA, Robinson JS (1998) Targeting of auxin carriers to the plasma membrane: differential effects of brefeldin A on the traffic of auxin uptake and efflux carriers. Planta 205: 606-612CrossRefGoogle Scholar
  61. 61.
    Morris DA, Rubery PH, Jarman J, Sabater M (1991) Effects of inhibitors of protein synthesis on transmembrane auxin transport in Cucurbita pepo L. hypocotyl segments. J Exp Bot 42: 773-783CrossRefGoogle Scholar
  62. 62.
    Morris DA, Thomas AG (1978) A microautoradiographic study of auxin transport in the stem of intact pea seedlings (Pisum sativum L.). J Exp Bot 29: 147-157CrossRefGoogle Scholar
  63. 63.
    Muday GK, DeLong A (2001) Polar auxin transport: controlling where and how much. Trends Plant Sci 6: 535-542CrossRefPubMedGoogle Scholar
  64. 64.
    Muday GK, Murphy AS (2002) An emerging model of auxin transport regulation. Plant Cell 14: 293-299CrossRefPubMedGoogle Scholar
  65. 65.
    Müller A, Guan C, Gälweiler L, Tänzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J 17: 6903-6911CrossRefPubMedGoogle Scholar
  66. 66.
    Murphy AS, Hoogner KR, Peer WA, Taiz L (2002) Identification, purification and molecular cloning of N-1-naphthylphthalamic acid-binding plasma membrane-associated aminopeptidases from Arabidopsis. Plant Physiol 128: 935-950CrossRefPubMedGoogle Scholar
  67. 67.
    Murphy A, Peer WA, Taiz L (2000) Regulation of auxin transport by aminopeptidases and endogenous flavonoids. Planta 211: 315-324CrossRefPubMedGoogle Scholar
  68. 68.
    Noh B, Murphy AS, Spalding EP (2001) Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13: 2441-2454CrossRefPubMedGoogle Scholar
  69. 69.
    Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y (1991) Requirement of the auxin polar transport system in the early stages of Arabidopsis floral bud formation. Plant Cell 3: 677-684CrossRefPubMedGoogle Scholar
  70. 70.
    Palme K, Gälweiler L (1999) PIN-pointing the molecular basis of auxin transport. Curr Opin Plant Biol 2: 375–381CrossRefPubMedGoogle Scholar
  71. 71.
    Parry G, Delbarre A, Marchant A, Swarup R, Napier R, Perrot-Rechenmann C, Bennett MJ (2001) Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant J 25: 399-406CrossRefPubMedGoogle Scholar
  72. 72.
    Petrášek J, Černá A, Schwarzerová K, Elčkner M, Morris DA, Zažímalová E (2003) Do phytotropins inhibit auxin efflux by impairing vesicle traffic? Plant Physiol 131: 254-263CrossRefPubMedGoogle Scholar
  73. 73.
    Petrášek J, Elčkner M, Morris DA, Zažímalová E (2002) Auxin efflux carrier activity and auxin accumulation regulate cell division and polarity in tobacco cells. Planta 216: 302-308CrossRefPubMedGoogle Scholar
  74. 74.
    Rashotte AM, Brady SR, Reed RC, Ante SJ, Muday GK (2000) Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol 122: 481-490CrossRefPubMedGoogle Scholar
  75. 75.
    Rashotte AM, DeLong A, Muday GK (2001) Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth. Plant Cell 13: 1683-1697CrossRefPubMedGoogle Scholar
  76. 76.
    Raven JA (1975) Transport of indoleacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol 74: 163-172CrossRefGoogle Scholar
  77. 77.
    Robinson JS, Albert AC, Morris DA (1999) Differential effects of brefeldin A and cycloheximide on the activity of auxin efflux carriers in Cucurbita pepo L. J Plant Physiol 155: 678-684Google Scholar
  78. 78.
    Rubery PH (1990) Phytotropins: receptors and endogenous ligands. Symp Soc Exp Biol 44: 119-146PubMedGoogle Scholar
  79. 79.
    Rubery PH, Sheldrake AR (1974) Carrier-mediated auxin transport. Planta 188: 101-121CrossRefGoogle Scholar
  80. 80.
    Ruegger M, Dewey E, Hobbie L, Brown D, Bernasconi P, Turner J, Muday G, Estelle M (1997) Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell 9: 745-757CrossRefPubMedGoogle Scholar
  81. 81.
    Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99: 463-472CrossRefPubMedGoogle Scholar
  82. 82.
    Sachs T (2000) Integrating cellular and organismic aspects of vascular differentiation. Plant Cell Physiol 41: 649-656PubMedGoogle Scholar
  83. 83.
    Schrick K, Mayer U, Martin G, Bellini C, Kuhnt C, Schmidt J, Jürgens G (2002) Interactions between sterol biosynthesis genes in embryonic development of Arabidopsis. Plant J 31: 61-73CrossRefPubMedGoogle Scholar
  84. 84.
    Shi L, Miller I, Moore R (1993) Immunocytochemical localization of indole-3-acetic acid in primary roots of Zea mays. Plant Cell Environ. 16: 967-973CrossRefGoogle Scholar
  85. 85.
    Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Gälweiler L, Palme K, Jürgens G (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286: 316-318CrossRefPubMedGoogle Scholar
  86. 86.
    Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001) Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev 15: 2648-2653CrossRefPubMedGoogle Scholar
  87. 87.
    Swarup R, Marchant A, Bennett MJ (2000) Auxin transport: providing a sense of direction during plant development. Biochem Soc T 28: 481-485CrossRefGoogle Scholar
  88. 88.
    Swarup R, Parry G, Graham N, Allen T, Bennett M (2002) Auxin cross-talk: integration of signalling pathways to control plant development. Plant Mol Biol 49: 411–426CrossRefPubMedGoogle Scholar
  89. 89.
    Uggla C, Mellerowicz EJ, Sundberg B (1998) Indole-3-acetic acid controls cambial growth in Scots pine by positional signaling. Plant Physiol 117: 113-121CrossRefPubMedGoogle Scholar
  90. 90.
    Utsuno K, Shikanai T, Yamada Y, Hashimoto T (1998) AGR, an Agravitropic locus of Arabidopsis thaliana, encodes a novel membrane-protein family member. Plant Cell Physiol 39: 1111–1118PubMedGoogle Scholar
  91. 91.
    Vandenbussche F, Smalle J, Le J, Saibo NJM, De Paepe A, Chaerle L, Tietz O, Smets R, Laarhoven LJJ, Harren FJM, Van Onckelen H, Palme K, Verbelen J-P, Van Der Straeten D (2003) The Arabidopsis mutant alh1 illustrates a cross talk between ethylene and auxin. Plant Physiol 131: 1228-1238CrossRefPubMedGoogle Scholar
  92. 92.
    Vissenberg K, Feijó JA, Weisenseel MH, Verbelen J-P (2001) Ion fluxes, auxin and the induction of elongation growth in Nicotiana tabacum cells. J Exp Bot 52: 2161-2167PubMedGoogle Scholar
  93. 93.
    Vogler H, Kuhlemeier C (2003) Simple hormones but complex signalling. Curr Opin Plant Biol 6: 51-56CrossRefPubMedGoogle Scholar
  94. 94.
    Went FW (1974) Reflections and speculations. Annu Rev Plant Physiol 25: 1-26CrossRefGoogle Scholar
  95. 95.
    Willemsen V, Friml J, Grebe M, van den Toorn A, Palme K, Scheres B (2003) Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function. Plant Cell 15: 612-625CrossRefPubMedGoogle Scholar
  96. 96.
    Yamamoto M, Yamamoto KT (1998) Differential effects of 1-naphthaleneacetic acid, indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid on the gravitropic response of roots in an auxin-resistant mutant of Arabidopsis, aux1. Plant Cell Physiol 39: 660-664PubMedGoogle Scholar
  97. 97.
    Zazimalova E, Napier RM (2003) Points of regulation for auxin action. Plant Cell Rep 21: 625-634PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • David A. Morris
    • 1
  • Jiří Friml
    • 2
  • Eva Zažímalová
    • 3
  1. 1.School of Biological SciencesUniversity of SouthamptonSouthamptonUK
  2. 2.Centre for Plant Molecular Biology, University of TübingenTübingenGermany
  3. 3.Institute of Experimental Botany, Academy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations