Skip to main content

Ethylene Responses in Seedling Growth and Development

  • Chapter
Plant Hormones

Abstract

The gaseous plant hormone ethylene is an olefin hydrocarbon produced by all plants. Despite its simple chemical structure it orchestrates a myriad of complex functions. Ethylene controls processes as diverse as germination, root hair development, root nodulation, senescence of organs (including fruit ripening), differential cell growth, abscission, stress responses and resistance to necrotrophic pathogens (1). It is known that ethylene is effective to induce biological responses at nanomolar concentrations and that its response only takes minutes to be induced. Due to the important nature of its signaling the production of this hormone is a tightly regulated process, controlled by both developmental signals and response to environmental stimuli. To further the understanding of ethylene signaling in plants we need to fully comprehend how the hormone is synthesized, perceived and signal is transduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles, FB, Morgan, PW, and Saltveit, Jr., ME (1992) Ethylene in Plant Biology, Ed 2 Academic Press, San Diego

    Google Scholar 

  2. Alonso JM, Hirayama T, Roman G, Nourizadeh S, and Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284: 2148-2152

    Article  CAS  PubMed  Google Scholar 

  3. Alonso JM and Ecker JR (2001) The ethylene pathway: a paradigm for plant hormone signaling and interaction. Sci STKE 70: RE1

    Google Scholar 

  4. Alonso JM, Stepanova AN, Solano R, Wisman E, Ferrari S, Ausubel FM, Ecker JR (2003) Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc Natl Acad Sci 100: 2992-2997

    Article  CAS  PubMed  Google Scholar 

  5. Berrocal-Lobo M, Molina A, Solano R (2002) Constitutive expression of ETHYLENERESPONSE- FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J 29: 23-32

    Article  CAS  PubMed  Google Scholar 

  6. Bleecker A, Estelle M, Somerville C and Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241: 1086-1089

    Article  CAS  PubMed  Google Scholar 

  7. Bleecker AB and Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol. 16: 1-18

    Article  CAS  PubMed  Google Scholar 

  8. Braam J and Davis RW (1990) Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell. 1990 60: 357-64

    CAS  Google Scholar 

  9. Burg, SP and Burg EA (1967) Inhibition of polar auxin transport by ethylene Plant Physiology 42: 1224-8

    Article  CAS  PubMed  Google Scholar 

  10. Cancel JD, Larsen PB (2002) Loss-of-function mutations in the ethylene receptor ETR1 cause enhanced sensitivity and exaggerated response to ethylene in Arabidopsis. Plant Physiol. 129: 1557-67

    Article  CAS  PubMed  Google Scholar 

  11. Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, and Ecker JR (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell. 89: 1133-44

    Article  CAS  PubMed  Google Scholar 

  12. Chang C and Stadler R (2001) Ethylene hormone receptor action in Arabidopsis. Bioessays. 23: 619-27

    Article  CAS  PubMed  Google Scholar 

  13. Chen YF, Randlett MD, Findell JL, and Schaller GE (2002) Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J Biol Chem. 277: 19861-6

    Article  CAS  PubMed  Google Scholar 

  14. Clarke JD, Volko SM, Ledford H, Ausubel FM, and Dong X (2000) Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in arabidopsis. Plant Cell. 12: 2175-90

    Article  CAS  PubMed  Google Scholar 

  15. Darwin, C and Darwin, F (1881) Darwins Gesammelte Werke Bd. 13. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  16. Ecker JR (1995) The ethylene signal transduction pathway in plants. Science 268: 667-75

    Article  CAS  PubMed  Google Scholar 

  17. Fujimoto SY, Ohta M, Usui A, Shinshi H, and Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell. 12: 393-404

    Article  CAS  PubMed  Google Scholar 

  18. Gao Z, Chen YF, Randlett MD, Zhao XC, Findell JL, Kieber JJ, Schaller GE (2003) Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J Biol Chem. 278: 34725-32

    Article  CAS  PubMed  Google Scholar 

  19. Guo H and Ecker JR (2003) Plant Responses to Ethylene Gas are Mediated by SCFEBF1/EBF2-Dependent Proteolysis of EIN3 Transcription Factor. Cell 115: 667-677

    Article  CAS  PubMed  Google Scholar 

  20. Guzman P and Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2: 513-23

    Article  CAS  PubMed  Google Scholar 

  21. Hall, AE, JL Findell, GE Schaller, and Bleecker AB (2000) Ethylene perception by the ERS1 protein of Arabidopsis. Plant Physiology 123:1449-1457

    Article  CAS  PubMed  Google Scholar 

  22. Hall, AE and Bleeker AB (2003) Analysis of combinatorial loss-of-function mutants in the Arabidopsis ethylene receptors reveals that the ers1 etr1 double mutant has severe developmental defects that are EIN2 dependent. Plant Cell. 15: 2032-41.

    Article  CAS  PubMed  Google Scholar 

  23. Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, and Ecker JR (1999) RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell. 97: 383-93

    Article  CAS  PubMed  Google Scholar 

  24. Huang Y, Li H, Hutchison CE, Laskey J, and Kieber JJ (2003) Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J. 33: 221-33

    Article  CAS  PubMed  Google Scholar 

  25. Hwang I, Chen HC, and Sheen J (2002) Two-component signal transduction pathways in Arabidopsis. Plant Physiol. 129: 500-15

    Article  CAS  PubMed  Google Scholar 

  26. Johnson KA, Sistrunk ML, Polisensky DH, and Braam J (1998) Arabidopsis thaliana responses to mechanical stimulation do not require ETR1 or EIN2. Plant Physiol. 116: 643-9

    Article  CAS  PubMed  Google Scholar 

  27. Kieber JJ, Rothenberg M, Roman G, Feldmann KA, and Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell. 72: 427-41

    Article  CAS  PubMed  Google Scholar 

  28. Larsen PB, and Chang C (2001) The Arabidopsis eer1 Mutant Has Enhanced Ethylene Responses in the Hypocotyl and Stem. Plant Physiol. 125: 1061-73

    Article  CAS  PubMed  Google Scholar 

  29. Larsen PB, and Cancel JD (2003) Enhanced ethylene responsiveness in the Arabidopsis eer1 mutant results from a loss-of-function mutation in the protein phosphatase 2A A regulatory subunit, RCN1. Plant J. 34: 709-18

    Article  CAS  PubMed  Google Scholar 

  30. Lehman A, Black R, and Ecker JR (1996) HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell. 85: 183-94

    Article  CAS  PubMed  Google Scholar 

  31. Lorenzo O, Piqueras R, Sanchez-Serrano JJ, and Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell. 15: 165-78

    Article  CAS  PubMed  Google Scholar 

  32. 32. Nehring RB and Ecker JR, personal communication

    Google Scholar 

  33. Neljubow D (1901) Ueber die horizontale Nutation der Stengel von Pisum sativum und einiger Anderer. Pflanzen Beih. Bot. Zentralbl. 10: 128-39

    Google Scholar 

  34. Ouaked F, Rozhon W, Lecourieux D, and Hirt HA (2003) MAPK pathway mediates ethylene signaling in plants. EMBO J. 22: 1282-8

    Article  CAS  PubMed  Google Scholar 

  35. Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C and Genschik P (2003) EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115: 679–689

    Article  CAS  PubMed  Google Scholar 

  36. Rashotte AM, DeLong A, and Muday GK (2001) Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth. Plant Cell. 13: 1683-97

    Article  CAS  PubMed  Google Scholar 

  37. Riechmann, J.L. and Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol. Chem. 379: 633-646

    Article  CAS  PubMed  Google Scholar 

  38. Rodriguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB (1999) A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science. 283: 996-8

    Article  CAS  PubMed  Google Scholar 

  39. Roman, G., B. Lubarsky, J.J. Kieber, M. Rothenberg, and Ecker JR (1995) Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: Five novel mutant loci integrated into a stress response pathway. Genetics 139: 1393-1409

    CAS  PubMed  Google Scholar 

  40. Schaller, GE and Bleecker AB (1995) Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science. 270: 1809-11

    Article  CAS  PubMed  Google Scholar 

  41. Schaller, GE and Kieber JJ (Sept 30, 2002) Ethylene, The Arabidopsis Book, eds. C.R. Somerville and E.M. Meyerowitz, American Society of Plant Biologists, Rockville, MD, doi/10.1199/tab.0009, http://www.aspb.org/publications/arabidopsis/

  42. Sistrunk ML, Antosiewicz DM, Purugganan MM, and Braam J (1994) Arabidopsis TCH3 encodes a novel Ca2+ binding protein and shows environmentally induced and tissue-specific regulation. Plant Cell. 6: 1553-65

    Article  CAS  PubMed  Google Scholar 

  43. Smalle J, Haegman M, Kurepa J, Van Montagu M, and Straeten DV (1997) Ethylene can stimulate Arabidopsis hypocotyl elongation in the light. Proc Natl Acad Sci U S A. 94: 2756-2761

    Article  CAS  PubMed  Google Scholar 

  44. Solano R, Stepanova A, Chao Q, and Ecker JR (1998). Nuclear events in ethylene signaling: A transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev. 12: 3703–3714

    Article  CAS  PubMed  Google Scholar 

  45. Stepanova AN, and Ecker, JR (2000) Ethylene signaling: From mutants to molecules. Curr. Opin. Plant Biol. 3, 353–360

    Article  CAS  PubMed  Google Scholar 

  46. Uchida A, and Yamamoto KT (2002) Effects of mechanical vibration on seed germination of Arabidopsis thaliana (L.) Heynh. Plant Cell Physiol. 43: 647-51

    Article  CAS  PubMed  Google Scholar 

  47. Vandenbussche F, Smalle J, Le J, Saibo NJ, De Paepe A, Chaerle L, Tietz O, Smets R, Laarhoven LJ, Harren FJ, Van Onckelen H, Palme K, Verbelen JP, and Van Der Straeten D (2003) The Arabidopsis mutant alh1 illustrates a cross talk between ethylene and auxin. Plant Physiol. 131: 1228-38

    Article  CAS  PubMed  Google Scholar 

  48. Wang KL, Li H and Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell. 14 Suppl:S131-51

    PubMed  Google Scholar 

  49. Wang W, Hall AE, O'Malley R, Bleecker AB (2003) Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proc Natl Acad Sci U S A. 100: 352-7

    Article  CAS  PubMed  Google Scholar 

  50. Woeste KE and Keiber JJ (2000) A Strong Loss-of-Function Mutation in RAN1 Results in Constitutive Activation of the Ethylene Response Pathway as Well as a Rosette- Lethal Phenotype. Plant Cell. 12: 443-455

    Article  CAS  PubMed  Google Scholar 

  51. Wright AJ, Knight H, and Knight MR (2002) Mechanically stimulated TCH3 gene expression in Arabidopsis involves protein phosphorylation and EIN6 downstream of calcium. Plant Physiol. 128: 1402-9

    Article  CAS  PubMed  Google Scholar 

  52. Zhao XC, Qu X, Mathews DE, and Schaller GE (2002) Effect of ethylene pathway mutations upon expression of the ethylene receptor ETR1 from Arabidopsis. Plant Physiol. 130: 1983-91

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramlah B. Nehring .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Nehring, R.B., Ecker, J.R. (2010). Ethylene Responses in Seedling Growth and Development. In: Davies, P.J. (eds) Plant Hormones. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2686-7_17

Download citation

Publish with us

Policies and ethics