Skip to main content

Morphology and Cellular Organisation in Botrytis Interactions with Plants

  • Chapter
Botrytis: Biology, Pathology and Control

Besides the ability of Botrytis species to survive saprophytically or endophytically these pathogens rapidly cause grey mould and other diseases in hundreds of mono- and dicotyledonous plants. The broad habitat range of one of these species, B. cinerea, should be perceived as having tremendous flexibility, not restricted regarding hosts and tissues. This potential is put into action by means of different infection strategies that vary along with conditions. The physical exploitation of host tissue can be best investigated by combined cytological techniques ranging from light microscopy to confocal laser video and high resolution electron microscopy. These techniques were applied to early infection phases and fungal infection organs, eventually further elucidated by molecular biological approaches. Emphasis is placed on hyphal tip swellings proven to be elaborated infection structures. Although constituting real appressoria, they might not mediate mechanical penetration in the first place. In addition, other infection mechanisms are reviewed, including enzymatic attack, and new evidence based on electron microscopy and cytochemistry is discussed, indicating chemical penetration mechanisms of cuticles not yet found in other fungal-plant interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  • Bartnicki-Garcia S (1969) Cell wall differentiation in the Phycomycetes. Phytopathology 59: 1065-1071

    CAS  PubMed  Google Scholar 

  • Bell AA and Wheeler MH (1986) Biosynthesis and functions of fungal melanins. Annual Review of Phytopathology 24: 411-451

    Article  CAS  Google Scholar 

  • Blackman VH and Welsford EJ (1916) Studies in the physiology of parasitism. II. Infection by Botrytis cinerea. Annals of Botany 30: 389-398

    Google Scholar 

  • Bourett TM, Czymmek KJ and Howard RJ (1998) An improved method for affinity probe localization in whole cells of filamentous fungi. Fungal Genetics and Biology 24: 3-13

    Article  CAS  PubMed  Google Scholar 

  • Clark CA and Lorbeer JW (1976) Comparative histopathology of Botrytis squamosa and Botrytis cinerea on onion leaves. Phytopathology 66: 1279-1289

    Article  Google Scholar 

  • Cole L, Dewey FM and Hawes CR (1996) Infection mechanisms of Botrytis species: pre-penetration and pre-infection processes of dry and wet conidia. Mycological Research 100: 277-286

    Article  Google Scholar 

  • Coley-Smith JR, Verhoeff K and Jarvis WR (1980) The Biology of Botrytis. Academic Press, New York, NY, USA

    Google Scholar 

  • Comménil P, Belingheri L and Dehorter B (1998) Antilipase antibodies prevent infection of tomato leaves by Botrytis cinerea. Physiological and Molecular Plant Pathology 52: 1-14

    Article  Google Scholar 

  • Cook DWM, Dewey FM, Long PG and Benhamou N (2000) The influence of simple sugars, salts, and Botrytis-specific monoclonal antibodies on the binding of bacteria and yeast to germlings of Botrytis cinerea. Canadian Journal of Botany 78: 1169-1179

    Article  CAS  Google Scholar 

  • Cooper R (1983) The mechanism and significance of enzymatic degradation of host cell walls by parasites. In: Callow JA (ed.) Biochemical Plant Pathology. (pp. 101-135) John Wiley & Sons, New York, USA

    Google Scholar 

  • Cooper LLD, Oliver JE, De Vilbiss ED and Doss RP (2000) Lipid composition of the extracellular matrix of Botrytis cinerea germlings. Phytochemistry 53: 293-298

    Article  CAS  PubMed  Google Scholar 

  • Debieu D, Bach J, Hugon M, Malosse C and Leroux P (2001) The hydroxyanilide fenhexamid, a new sterol biosynthesis inhibitor fungicide efficient against the plant pathogenic fungus Botrytinia fuckeliana (Botrytis cinerea). Pest Management Science 57: 1060-1067

    Article  CAS  PubMed  Google Scholar 

  • Doss RP, Deisenhofer J, Von Nidda HAK, Soeldner AH and McGuire RP (2003) Melanin in the extracellular matrix of germlings of Botrytis cinerea. Phytochemistry 63: 687-691

    Article  CAS  PubMed  Google Scholar 

  • Doss RP, Potter SW, Chastagner GA and Christian JK (1993) Adhesion of nongerminated Botrytis cinerea conidia to several substrata. Applied and Environmental Microbiology 59: 1786-1791

    CAS  PubMed  Google Scholar 

  • Doss RP, Potter SW, Christian JK, Soeldner AH and Chastagner GA (1997) The conidial surface of Botrytis cinerea and several other Botrytis species. Canadian Journal of Botany 75: 612-617

    Google Scholar 

  • Doss RP, Potter SW, Soeldner AH, Christian JK and Fukunaga LE (1995) Adhesion of germlings of Botrytis cinerea. Applied and Environmental Microbiology 61: 260-265

    CAS  PubMed  Google Scholar 

  • Elad Y (1988) Scanning electron microscopy of parasitism of Botrytis cinerea on flowers and fruits of cucumber. Transactions of the British Mycological Society 91: 185-190

    Article  Google Scholar 

  • Elad Y (1989) Effect of abiotic conditions on development of grey mould of rose and scanning electron microscopy. Phytopathologia Mediterranea 28: 122-130

    Google Scholar 

  • Elad Y (1997) Response of plants to infection by Botrytis cinerea and novel means involved in reducing their susceptibility to infection. Biological Reviews 72: 381-422

    Article  Google Scholar 

  • El Ghaouth A, Arul J, Wilson C and Benhamou N (1994) Ultrastructural and cytochemical aspects of the effect of chitosan on decay of bell pepper fruit. Physiological and Molecular Plant Pathology 44: 417-432

    Article  Google Scholar 

  • El Ghaouth A, Wilson CL and Wisniewski M (1997) Antifungal activity of 2-deoxy-D-glucose on Botrytis cinerea, Penicillium expansum, and Rhizopus stolonifer: Ultrastructural and cytochemical aspects. Phytopathology 87: 772-779

    Article  CAS  PubMed  Google Scholar 

  • El Ghaouth A, Wilson CL and Wisniewski M (1998) Ultrastructural and cytochemical aspects of the biological control of Botrytis cinerea by Candida saitoana in apple fruit. Phytopathology 88: 282-291

    Article  CAS  PubMed  Google Scholar 

  • Epton HAS and Richmond DV (1980) Formation, structure and germination of conidia. In: Coley-Smith JR, Verhoeff K and Jarvis WR (eds) The Biology of Botrytis. (pp. 41-83) Academic Press, London, UK

    Google Scholar 

  • Fischer-Parton S, Parton RM, Hickey PC, Dijksterhuis J, Atkinson HA and Read ND (2000) Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. Journal of Microscopy 198: 246-259

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Arenal E and Sagasta EM (1980) Scanning electron microscopy of Botrytis penetration of bean (Phaseolus vulgaris) hypocotyls. Phytopathologische Zeitschrift 99: 37-42

    Article  Google Scholar 

  • Gardiner RB and Day AW (1988) Surface proteinaceous fibrils (fimbriae) on filamentous fungi. Canadian Journal of Botany 66: 2474-2484

    Article  Google Scholar 

  • Girbardt M (1969) Die Ultrastruktur der Apikalregion von Pilzhyphen. Protoplasma 67: 413-441

    Article  Google Scholar 

  • Gooday GW (1993) Cell envelope diversity and dynamics in yeasts and filamentous fungi. Journal of Applied Bacteriology 74(S): 12-20

    Google Scholar 

  • Gull K and Trinci APJ (1971) Fine structure of spore germination in Botrytis cinerea. Journal of General Microbiology 68: 207-220

    Google Scholar 

  • Hammer PE and Evensen KB (1994) Differences between rose cultivars in susceptibility to infection by Botrytis cinerea. Phytopathology 84: 1305-1312

    Article  Google Scholar 

  • Hawker LE and Hendy RJ (1963) An electron-microscope study of germination of conidia of Botrytis cinerea. Journal of General Microbiology 33: 43-46

    CAS  PubMed  Google Scholar 

  • Held K, Koch S, Krümberg SA and Tenberge KB (2002) Licht- und elektronenmikroskopische Untersuchungen zur Wirkung des Botrytizids Fenhexamid. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft 390: 106

    Google Scholar 

  • Howard RJ (1997) Breaching the outer barriers - cuticles and cell wall penetration. In: Carroll GC and Tudzynski P (eds) The Mycota V, Plant Relationships, Part A. (pp. 43-60) Springer-Verlag, Berlin

    Google Scholar 

  • Islam SZ, Honda Y and Sonhaji M (1998) Phototropism of conidial germ tubes of Botrytis cinerea and its implication in plant infection processes. Plant Disease 82: 850-856

    Article  Google Scholar 

  • Jarvis WR (1977) Botryotinia and Botrytis Species: Taxonomy, Physiology, and Pathogenicity. A Guide to the Literature. Monograph No. 15, Research Branch, Canada Department of Agriculture, Harrow, Ontario, Canada

    Google Scholar 

  • Jijakli MH and Lepoivre P (1998) Characterization of an exo-β-1,3-glucanase produced by Pichia anomala strain K, antagonist of Botrytis cinerea on apples. Phytopathology 88: 335-343

    Article  CAS  PubMed  Google Scholar 

  • Jones GL, Bailey JA and O'Connell RJ (1995) Sensitive staining of fungal extracellular matrices using colloidal gold. Mycological Research 99: 567-573

    Article  Google Scholar 

  • Kaile A, Pitt D and Kuhn PJ (1991) Release of calcium and other ions from various plant host tissues infected by different necrotrophic pathogens with special reference to Botrytis cinerea Pers. Physiological and Molecular Plant Pathology 38: 275-291

    Article  CAS  Google Scholar 

  • Kobayashi M, Nakagawa H, Asaka T and Matoh T (1999) Borate-rhamnogalacturonan II bonding reinforced by Ca2+ retains pectin polysaccharides in higher-plant cell walls. Plant Physiology 119: 199-203

    Article  CAS  PubMed  Google Scholar 

  • McKeen WE (1974) Mode of penetration of epidermal cell walls of Vicia faba by Botrytis cinerea. Phytopathology 64: 461-467

    Google Scholar 

  • Mendgen K, Bachem U, Stark-Urnau M and Xu H (1995) Secretion and endocytosis at the interface of plants and fungi. Canadian Journal of Botany (Suppl. 1) 73(S): S640-S648

    Article  Google Scholar 

  • Meyer U and Dewey FM (2000) Efficacy of different immunogens for raising monoclonal antibodies to Botrytis cinerea. Mycological Research 104: 979-987

    Article  CAS  Google Scholar 

  • Meyer U, Dewey M and Elad Y (2000) The role of L-rhamnose production by Botrytis cinerea in plant pathogen interaction. XII Botrytis Symposium, Reims, France, p. L4

    Google Scholar 

  • Pezet R and Pont V (1990) Ultrastructural observations of pterostilbene fungitoxicity in dormant conidia of Botrytis cinerea Pers. Journal of Phytopathology 129: 19-30

    Article  CAS  Google Scholar 

  • Pie K and De Leeuw GTN (1991) Histopathology of the initial stages of the interaction between rose flowers and Botrytis cinerea. Netherlands Journal of Plant Pathology 97: 335-344

    Article  Google Scholar 

  • Prins TW, Tudzynski P, von Tiedemann A, Tudzynski B, Ten Have A, Hansen ME, Tenberge K and Van Kan JAL (2000) Infection strategies of Botrytis cinerea and related necrotrophic pathogens. In: Kronstad JW (ed.) Fungal Pathology. (pp. 33-63) Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Richmond DV and Pring RJ (1971a) Fine structure of Botrytis fabae Sardiña conidia. Annals of Botany 35: 175-182

    Google Scholar 

  • Richmond DV and Pring RJ (1971b) Fine structure of germinating Botrytis fabae Sardiña conidia. Annals of Botany 35: 493-500

    Google Scholar 

  • Rijkenberg FHJ, De Leeuw GTN and Verhoeff K (1980) Light and electron microscopy studies on the infection of tomato fruits by Botrytis cinerea. Canadian Journal of Botany 58: 1394-1404

    Google Scholar 

  • Rolke Y, Liu S, Quidde T, Williamson B, Schouten A, Weltring K-M, Siewers V, Tenberge KB, Tudzynski B and Tudzynski P (2004) Functional analysis of H2O2-generating systems in Botrytis cinerea: the major Cu-Zn-superoxide dismutase (BCSOD1) contributes to virulence on French bean, whereas a glucose oxidase (BCGOD1) is dispensable. Molecular Plant Pathology 5: 17-27

    Article  CAS  PubMed  Google Scholar 

  • Salinas J (1992) Function of cutinolytic enzymes in the infection of gerbera flowers by Botrytis cinerea. PhD Thesis, University of Utrecht, The Netherlands

    Google Scholar 

  • Salinas J and Verhoeff K (1995) Microscopical studies of the infection of gerbera flowers by Botrytis cinerea. European Journal of Plant Pathology 101: 377-386

    Article  Google Scholar 

  • Schouten A, Tenberge KB, Vermeer J, Stewart J, Wagemakers L, Williamson B and Van Kan JAL (2002) Functional analysis of an extracellular catalase of Botrytis cinerea. Molecular Plant Pathology 3: 227-238

    Article  CAS  PubMed  Google Scholar 

  • Schulze Gronover C, Kasulke D, Tudzynski P and Tudzynski B (2001) The role of G protein alpha subunits in the infection process of the gray mold fungus Botrytis cinerea. Molecular Plant-Microbe Interactions 14: 1293-1302

    Article  Google Scholar 

  • Soulié MC, Piffeteau A, Choquer M, Boccara M and Vidal-Cros A (2003) Disruption of Botrytis cinerea class I chitin synthase gene Bcchs1 results in cell wall weakening and reduced virulence. Fungal Genetics and Biology 40: 38-46

    Article  CAS  PubMed  Google Scholar 

  • Stahmann KP, Pielken P, Schimz KL and Sahm H (1992) Degradation of extracellular β-(1,3)(1,6)-D-glucan by Botrytis cinerea. Applied and Environmental Microbiology 58: 3347-3354

    CAS  PubMed  Google Scholar 

  • Stahmann KP, Schimz KL and Sahm H (1993) Purification and characterization of four extracellular 1,3-β-glucanases of Botrytis cinerea. Journal of General Microbiology 139: 2833-2840

    CAS  Google Scholar 

  • Tenberge KB, Beckedorf M, Hoppe B, Schouten A, Solf M and Von den Driesch M (2002) In situ localization of AOS in host-pathogen interactions. Microscopy and Microanalysis 8 (S2): 250-251

    Google Scholar 

  • Ten Have A, Tenberge KB, Benen JAE, Tudzynski P, Visser J and Van Kan JAL (2002) The contribution of cell wall degrading enzymes to pathogenesis of fungal plant pathogens. In: Kempken F (ed.) The Mycota XI, Agricultural Applications. (pp. 341-358) Springer-Verlag, Berlin, Germany

    Google Scholar 

  • Tudzynski P and Tudzynski B (1996) Genetics of phytopathogenic fungi. Progress in Botany 57: 235-252

    Google Scholar 

  • Valette-Collet O, Cimerman A, Reignault P, Levis C and Boccara M (2003) Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants. Molecular Plant-Microbe Interactions 16: 360-367

    Article  CAS  PubMed  Google Scholar 

  • Van Kan JAL, Van't Klooster JW, Wagemakers CAM, Dees DCT and Van der Vlugt-Bergmans CJB (1997) Cutinase A of Botrytis cinerea is expressed, but not essential, during penetration of gerbera and tomato. Molecular Plant-Microbe Interactions 10: 30-38

    Article  CAS  PubMed  Google Scholar 

  • Verhoeff K (1980) The infection process and host-pathogen interactions. In: Coley-Smith JR, Verhoeff K and Jarvis WR (eds) The Biology of Botrytis. (pp. 153-180) Academic Press, London, UK

    Google Scholar 

  • Verhoeff K, Malathrakis NE and Williamson B (eds) (1992) Recent Advances in Botrytis Research. Pudoc Scientific Publishers, Wageningen, The Netherlands

    Google Scholar 

  • Viaud M, Brunet-Simon A, Brygoo Y, Pradier JM and Levis C (2003) Cyclophilin A and calcineurin functions investigated by gene inactivation, cyclosporin A inhibition and cDNA arrays approaches in the phytopathogenic fungus Botrytis cinerea. Molecular Microbiology 50: 1451-1465

    Article  CAS  PubMed  Google Scholar 

  • Volpin H and Elad Y (1991) Influence of calcium nutrition on susceptibility of rose flowers to Botrytis blight. Phytopathology 81: 1390-1394

    Article  CAS  Google Scholar 

  • Wang GY, Michailides TJ, Hammock BD, Lee YM and Bostock RM (2002) Molecular cloning, characterization, and expression of a redox-responsive cutinase from Monilinia fructicola (Wint.) Honey. Fungal Genetics and Biology 35: 261-276

    Article  CAS  PubMed  Google Scholar 

  • Weber RWS, Wakley GE and Pitt D (1999) Histochemical and ultrastructural characterization of vacuoles and spherosomes as components of the lytic system in hyphae of the fungus Botrytis cinerea. The Histochemical Journal 31: 293-301

    Article  CAS  PubMed  Google Scholar 

  • Williamson B, Duncan GH, Harrison JG, Harding LA, Elad Y and Zimand G (1995) Effect of humidity on infection of rose petals by dry-inoculated conidia of Botrytis cinerea. Mycological Research 99: 1303-1310

    Article  Google Scholar 

  • Zheng L, Campbell M, Murphy J, Lam S and Xu JR (2000) The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea. Molecular Plant-Microbe Interactions 13: 724-732

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Tenberge, K.B. (2007). Morphology and Cellular Organisation in Botrytis Interactions with Plants. In: Elad, Y., Williamson, B., Tudzynski, P., Delen, N. (eds) Botrytis: Biology, Pathology and Control. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2626-3_5

Download citation

Publish with us

Policies and ethics