Skip to main content

The Ecology of Botrytis on Plant Surfaces

  • Chapter

The initiation of disease by members of Botrytis species depends on a complex sequence of biological events involving host and environment sensing, chemical and physical interactions between the fungal propagules and the host surface and the microbial interactions on the surface of the host. The pathogen's inoculum is central to the understanding of this interaction. This chapter describes the inoculum ecology of Botrytis species on plant surfaces and relates this information to an understanding of disease initiation. Botrytis species deploy several propagules and survival structures. A knowledge of the precise behaviour of these propagules, especially the hydrophobic conidia, when dispersed and deposited on the host at high relative humidity in the presence or absence of water droplets is important for disease initiation and control. The responsiveness of propagules to the environment, and the diversity shown in attack strategies by these pathogens are discussed with examples of the infection pathways used. Special comment is made about suitable inoculation procedures to study grey mould in leaves and fruits.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  • Akutsu K, Kobayashi Y, Matsuzawa Y, Watanabe T, Ko K and Misato T (1981) Morphological studies on infection process of cucumber leaves by conidia of Botrytis cinerea stimulated with various purine-related compounds. Annals of the Phytopathological Society of Japan 47: 234-243

    Google Scholar 

  • Aylor DE (1978) Dispersal in time and space: aerial pathogens. In: Horsfall JG and Cowling EB (eds) Plant Disease: an Advanced Treatise. Vol II (pp. 159-180) Academic Press, New York, USA

    Google Scholar 

  • Aylor DE (1990) The role of intermittent wind in the dispersal of fungal pathogens. Annual Review of Phytopathology 28: 73-92

    Article  Google Scholar 

  • Backhouse D and Willets HJ (1984) A histochemical study of sclerotia of Botrytis cinerea and Botrytis fabae. Canadian Journal of Microbiology 30: 171-178

    Article  CAS  Google Scholar 

  • Backhouse D and Willetts HJ (1987) Development and infection cushions of Botrytis cinerea. Transactions of the British Mycological Society 89: 89-95

    Article  Google Scholar 

  • Blakeman JP (1980) Behaviour of conidia on aerial plant surfaces. In: Coley-Smith JR, Verhoeff K and Jarvis WR (eds) The Biology of Botrytis. (pp. 115-151) Academic Press, London, UK

    Google Scholar 

  • Bristow PR, McNicol RJ and Williamson B (1986) Infection of strawberry flowers by Botrytis cinerea and its relevance to grey mould development. Annals of Applied Biology 109: 545-554

    Article  Google Scholar 

  • Clark CA and Lorbeer JW (1976) Comparative histopathology of Botrytis squamosa and B. cinerea on onion leaves. Phytopathology 66: 1279-1289

    Article  Google Scholar 

  • Coertze S and Holz G (1999) Surface colonization, penetration, and lesion formation on grapes inoculated fresh or after cold storage with single airborne conidia of Botrytis cinerea. Plant Disease 83: 917-924

    Article  Google Scholar 

  • Coertze S and Holz G (2002) Epidemiology of Botrytis cinerea on grape: wound infection by dry, airborne conidia. South African Journal of Enology and Viticulture 23: 72-77

    Google Scholar 

  • Coertze S, Holz G and Sadie A (2001) Germination and establishment of infection on grape berries by single airborne conidia of Botrytis cinerea. Plant Disease 85: 668-677

    Article  Google Scholar 

  • Cole L, Dewey FM and Hawes CR (1996) Infection mechanisms of Botrytis species: pre-penetration and pre-infection processes of dry and wet conidia. Mycological Research 100: 277-286

    Article  Google Scholar 

  • Coley-Smith JR (1980) Sclerotia and other structures in survival. In: Coley-Smith JR, Verhoeff K and Jarvis WR (eds) The Biology of Botrytis. (pp. 85-114) Academic Press, London, UK

    Google Scholar 

  • De Kock SL and Holz G (1992) Blossom-end rot of pears: systemic infection of flowers and immature fruit by Botrytis cinerea. Journal of Phytopathology 135: 317-327

    Article  Google Scholar 

  • Doss RP, Potter SW, Chastagner GA and Christian JK (1993) Adhesion of nongerminated Botrytis cinerea conidia to several substrata. Applied and Environmental Microbiology 59: 1786-1791

    CAS  PubMed  Google Scholar 

  • Doss RP, Potter SW, Soeldner AH, Christian JK and Fukunaga LE (1995) Adhesion of germlings of Botrytis cinerea. Applied and Environmental Microbiology 61: 206-265

    Google Scholar 

  • Duncan RA, Stapleton JJ and Leavitt GM (1995) Population dynamics of epiphytic mycoflora and occurrence of bunch rots of wine grapes as influenced by leaf removal. Plant Pathology 44: 956-965

    Article  Google Scholar 

  • Edlich W, Lorenz G, Lyr H, Nega E and Pommer E-H (1989) New aspects on the infection mechanism of Botrytis cinerea Pers. Netherlands Journal of Plant Pathology 95 (Supplement 1): 53-62

    Article  CAS  Google Scholar 

  • Emmett RW and Parbery DG (1975) Appressoria. Annual Review of Phytopathology 13: 147-167

    Article  Google Scholar 

  • Engelbrecht R (2002) The role of the Mediterranean fruit fly, Ceratitis capitata, in Botrytis bunch rot on grape. MScAgric thesis, University of Stellenbosch, Stellenbosch, South Africa

    Google Scholar 

  • Fermaud M and Gaunt RE (1995) Thrips obscuratus as a potential vector of Botrytis cinerea in kiwifruit. Mycological Research 99: 267-273

    Article  Google Scholar 

  • Fermaud M and Le Menn R (1989) Association of Botrytis cinerea with grape berry moth larvae. Phytopathology 79: 651-656

    Article  Google Scholar 

  • Ferrandino FJ and Aylor DE (1984) Settling speed of clusters of spores. Phytopathology 74: 969-972

    Article  Google Scholar 

  • Fitt BDL, Creighton NF and Bainbridge A (1985) Role of wind and rain in dispersal of Botrytis fabae conidia. Transactions of the British Mycological Society 85: 307-312

    Article  Google Scholar 

  • Fourie JF and Holz G (1994) Infection of plum and nectarine flowers by Botrytis cinerea. Plant Pathology 43: 309-315

    Article  Google Scholar 

  • Fourie JF and Holz G (1995) Initial infection processes by Botrytis cinerea on nectarine and plum fruit and the development of decay. Phytopathology 85: 82-87

    Article  Google Scholar 

  • Fourie JF and Holz G (1998) Effects of fruit and pollen exudates on growth of Botrytis cinerea and on infection of plum and nectarine fruit. Plant Disease 82: 165-170

    Article  Google Scholar 

  • Garcia-Arenal F and Sagasta FM (1980) Scanning electron microscopy of Botrytis cinerea penetration of bean (Phaseolus vulgaris) hypocotyls. Phytopathologische Zeitschrift 99: 37-42

    Article  Google Scholar 

  • Harper AM, Strange RN and Langcake P (1981) Characterisation of the nutrients required by Botrytis cinerea to infect broad bean leaves. Physiological Plant Pathology 19: 153-167

    CAS  Google Scholar 

  • Harrison JG (1983) Survival of Botrytis fabae conidia in air. Transactions of the British Mycological Society 80: 263-269

    Article  Google Scholar 

  • Harrison JG and Hargreaves AJ (1977) Production and germination in vitro of Botrytis fabae microconidia. Transactions of the British Mycological Society 69: 332-335

    Article  Google Scholar 

  • Harrison JG and Lowe R (1987) Wind dispersal of conidia of Botrytis spp. pathogenic to Vicia faba. Plant Pathology 36: 5-15

    Article  Google Scholar 

  • Harrison JG, Lowe and Williams NA (1994) Humidity and fungal diseases of plants - problems. In: Blakeman JP and Williamson B (eds) Ecology of Plant Pathogens. (pp. 79-97) CAB International, Wallingford, UK

    Google Scholar 

  • Hill GK, Stellwaag-Kittler F, Huth G and Schlösser E (1981) Resistance of grapes in different development stages to Botrytis cinerea. Phytopathologische Zeitschrift 102: 329-338

    Article  Google Scholar 

  • Hislop EC (1969) Splash dispersal of fungus spores and fungicides in the laboratory and greenhouse. Annals of Applied Biology 63: 71-80

    Article  Google Scholar 

  • Holz G (1999) Behaviour and infection pathways of diverse fungal pathogens on fruit. In: Conference Handbook, 12th Biennial Australasian Plant Pathology Society Conference, Canberra, Australia, p. 257

    Google Scholar 

  • Holz G, Gütschow M, Coertze S and Calitz FJ (2003) Occurrence of Botrytis cinerea and subsequent disease expression at different positions on leaves and bunches of grape. Plant Disease 87: 351-358

    Article  Google Scholar 

  • Hsieh TF, Huang JW and Hsiang T (2001) Light and scanning electron microscopy studies on the infection of oriental lily leaves by Botrytis elliptica. European Journal of Plant Pathology 107: 571-581

    Article  Google Scholar 

  • Islam SZ, Honda Y and Sonhaji M (1998) Phototropism of conidial germ tubes of Botrytis cinerea and its implication in plant infection processes. Plant Disease 82: 850-856

    Article  Google Scholar 

  • Jarvis WR (1962a) The dispersal of spores of Botrytis cinerea Fr. in a raspberry plantation. Transactions of the British Mycological Society 45: 549-559

    Article  Google Scholar 

  • Jarvis WR (1962b) Splash dispersal of spores of Botrytis cinerea Pers. Nature (London) 193: 599

    Article  Google Scholar 

  • Jarvis WR (1980a) Taxonomy. In: Coley-Smith JR, Verhoeff K and Jarvis WR (eds) The Biology of Botrytis. (pp. 1-18) Academic Press, London, UK

    Google Scholar 

  • Jarvis WR (1980b) Epidemiology. In: Coley-Smith JR, Verhoeff K and Jarvis, WR (eds) The Biology of Botrytis. (pp. 219-250) Academic Press, London, UK

    Google Scholar 

  • Johnson KB and Powelson ML (1983) Analysis of spore dispersal gradients of Botrytis cinerea and gray mold disease gradients in snap beans. Phytopathology 73: 741-746

    Article  Google Scholar 

  • Kobayashi T (1984) Infection of petals of ornamental woody plants with Botrytis cinerea and its role as infection sources. Annals of the Phytopathological Society of Japan 50: 528-534

    Google Scholar 

  • Klimpel A, Schulze Gronover C, Williamson B, Stewart JA and Tudzynski B (2002) The adenylate cyclase (BAC) in Botrytis cinerea is required for full pathogenicity. Molecular Plant Pathology 3: 439-450

    Article  CAS  PubMed  Google Scholar 

  • Lorenz DK and Eichhorn KW (1983) Investigations on Botyotinia fuckeliana Whetz., the perfect stage of Botrytis cinerea Pers. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz 90: 1-11

    Google Scholar 

  • Louis C, Girard M, Kuhl G. and Lopez-Ferber M (1996) Persistence of Botrytis cinerea in its vector Drosophila melanogaster. Phytopathology 86: 934-939

    Article  Google Scholar 

  • Mansfield JW and Deverall BJ (1974) The rates of fungal development and lesion formation in leaves of Vicia faba during infection by Botrytis cinerea and Botrytis fabae. Annals of Applied Biology 76: 77-89

    Article  Google Scholar 

  • Marroni MV, Scott RR, Teulon DAJ and Jaspers MV (2003) Botrytis infection of grapes: affected by flower-feeding thrips? 8th International Congress of Plant Pathology, Christchurch, New Zealand. Vol 2, p. 117

    Google Scholar 

  • McCartney HA (1994) Spore dispersal: Environmental and biological factors. In: Blakeman J and Williamson B (eds) Ecology of Plant Pathogens. (pp. 171-185) CAB International, Wallingford, UK

    Google Scholar 

  • McClellan WD and Hewitt B (1973) Early Botrytis rot of grapes: Time of infection and latency of Botrytis cinerea Pers. in Vitis vinifera L. Phytopathology 63: 1151-1157

    Google Scholar 

  • McNicol RJ. and Williamson B (1989) Systematic infection of black currant flowers by Botrytis cinerea and its involvement in premature abscission of fruits. Annals of Applied Biology 114: 243-254

    Article  Google Scholar 

  • McNicol RJ., Williamson B and Dolan A (1985) Infection of red raspberry styles and carpels by Botrytis cinerea and its possible role in post-harvest grey mould. Annals of Applied Biology 106: 49-53

    Article  Google Scholar 

  • Muckenschnabel I, Goodman BA, Williamson B, Lyon GD and Deighton N (2002) Infection of leaves of Arabidopsis thaliana by Botrytis cinerea: changes in ascorbic acid, free radicals and lipid peroxidation products. Journal of Experimental Botany 53: 207-214

    Article  CAS  PubMed  Google Scholar 

  • Nair NG and Allen RN (1993) Infection of grape flowers and berries by Botrytis cinerea as a function of time and temperature. Mycological Research 97: 1012-1014

    Article  Google Scholar 

  • Nair NG and Nadtotchei A (1987) Sclerotia of Botrytis as a source of primary inoculum for bunch rot of grapes in New South Wales, Australia. Journal of Phytopathology 119: 42-51

    Article  CAS  Google Scholar 

  • Nelson KE (1951) Effect of humidity on infection of table grapes by Botrytis cinerea. Phytopathology 41: 859-864

    Google Scholar 

  • Pie K and De Leeuw GTN (1991) Histopathology of the initial stages of the interaction between rose flowers and Botrytis cinerea. Netherlands Journal of Plant Pathology 97: 335-344

    Article  Google Scholar 

  • Pucheu-Planté B and Mercier M (1983) Étude ultrastructurale de l’interrelation hôte-parasite entre le raisin et le champignon Botrytis cinerea: exemple de la pourriture noble en Sauternais. Canadian Journal of Botany 61: 1785-1797

    Google Scholar 

  • Reifschneider FJB and Boiteux LS (1988) A vacuum-operated settling tower for inoculation of powdery mildew fungi. Phytopathology 78: 1463-1465

    Article  Google Scholar 

  • Rijkenberg FHJ, Leeuw GTN de and Verhoeff K (1980) Light and electron microscope studies on the infection of tomato fruits by Botrytis cinerea. Canadian Journal of Botany 58: 1394-1404

    Google Scholar 

  • Rotem J and Aust HJ (1991) The effect of ultraviolet and solar radiation and temperature on survival of fungal propagules. Journal of Phytopathology 133: 76-84

    Article  Google Scholar 

  • Rotem J, Cohen Y and Bashi E (1978) Host and environmental influences on sporulation in vivo. Annual Review of Phytopathology 16: 83-101

    Article  Google Scholar 

  • Salinas J, Glandorf DCM, Picavet FD and Verhoeff K (1989) Effects of temperature, relative humidity and age of conidia on the incidence of spotting on gerbera flowers caused by Botrytis cinerea. Netherlands Journal of Plant Pathology 95: 51-64

    Article  Google Scholar 

  • Seyb AM (2003) Botrytis cinerea inoculum sources in the vineyard system. PhD Dissertation, Lincoln University, Lincoln, New Zealand

    Google Scholar 

  • Shirane N and Watanabe Y (1985) Comparison of infection process of Botrytis cinerea on cucumber cotyledon and strawberry petal. Annals of the Phytopathological Society of Japan 51: 501–505

    Google Scholar 

  • Schouten A, Tenberge KB, Vermeer J, Stewart J, Wagemakers L, Williamson B and Van Kan JAL (2002) Functional analysis of an extracellular catalase of Botrytis cinerea. Molecular Plant Pathology 3: 227–238

    Article  CAS  PubMed  Google Scholar 

  • Sosa–Alvarez M, Madden LV and Ellis MA (1995) Effects of temperature and wetness duration on sporulation of Botrytis cinerea on strawberry leaf surfaces. Plant Disease 79: 609–615

    Google Scholar 

  • Spotts RA (1985) Environmental factors affecting conidial survival of five pear decay fungi. Plant Disease 69: 391–392

    Article  Google Scholar 

  • Spotts RA and Holz G (1996) Adhesion and removal of conidia of Botrytis cinerea and Penicillium expansum from grape and plum fruit surfaces. Plant Disease 80: 688–691

    Google Scholar 

  • Urbasch I (1983) Über Entstehung und Keimung der Chlamydosporen von Botrytis cinerea Pers. Phytopathologische Zeitschrift 108: 54–60

    Article  Google Scholar 

  • Urbasch I (1984a) Kugelige, umhüllte Mikrokonidien–Aggregate als Überdauerungs–und Verbreitungseinheiten von Botrytis cinerea Pers. Phytopathologische Zeitschrift 109: 241–244

    Article  Google Scholar 

  • Urbasch I (1984b) Microcycle micro– and macroconidiogenesis of Botrytis cinerea Pers. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz 91: 459–471

    Google Scholar 

  • Urbasch I (1985a) Dedifferenzierung der Appressorien von Botrytis cinerea Pers. unter Bildung von Mikrokonidien – Relation zur Resistenz von Lycopersicon spp. gegen B. cinerea. Phytopathologische Zeitschrift 113: 348–358

    Google Scholar 

  • Urbasch I (1985b) Ultrastructural studies on the microconidia of Botrytis cinerea Pers. and their phialoconidial development. Phytopathologische Zeitschrift 112: 229–237

    Article  Google Scholar 

  • Urbasch I (1986) In vivo–Untersuchungen zur Entstehung und Funktion der Chlamydosporen von Botrytis cinerea Pers. am Wirt–Parasit–System Fuchsia hybridaB. cinerea. Phytopathologische Zeitschrift 117: 276–282

    Article  Google Scholar 

  • Van den Heuvel J (1981) Effect of inoculum composition on infection of French bean leaves by conidia of Botrytis cinerea. Netherlands Journal of Plant Pathology 87: 55–64

    Article  Google Scholar 

  • Van den Heuvel J and Waterreus LP (1983) Conidial concentration as an important factor determining the type of prepenetration structures formed by Botrytis cinerea on leaves of French bean (Phaseolus vulgaris). Plant Pathology 32: 236–272

    Google Scholar 

  • Vercesi A and Bisiach M (1982) Indagine sulla fluttuazione del potenziale d'inoculo di Botrytis cinerea Pers. in vigneto. Rivista di Patologia Vegetale 18: 13–48

    Google Scholar 

  • Walter M, Boyd–Wilson KSH and Perry, JH (1999a) Role of style infections with Botrytis cinerea on hybrid berry rot (Rubus spp.). Acta Horticulturae No. 505: 129–135

    Google Scholar 

  • Walter M, Boyd–Wilson KSH, Perry JH, Elmer PAG and Frampton CM (1999b) Survival of Botrytis cinerea conidia on kiwifruit. Plant Pathology 48: 823–829

    Article  Google Scholar 

  • Williamson B, Duncan GH, Harrison JG, Harding LA, Elad Y and Zimand G (1995) Effect of humidity on infection of rose petals by dry–inoculated conidia of Botrytis cinerea. Mycological Research 99: 1303–1310

    Article  Google Scholar 

  • Williamson B, McNicol RJ and Dolan A (1987) The effect of inoculating flowers and developing fruits with Botrytis cinerea on post–harvest grey mould of red raspberry. Annals of Applied Biology 111: 285–294

    Article  Google Scholar 

  • Zadoks JC and Schein RD (1979) Epidemiology and Plant Disease Management. Oxford University Press Inc., New York, USA

    Google Scholar 

  • Zervoudakis G, Tairis N, Salahas G and Georgiou CD (2003) E–carotene production and sclerotia differentiation in Sclerotinia minor. Mycological Research 107: 624–631

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Holz, G., Coertze, S., Williamson, B. (2007). The Ecology of Botrytis on Plant Surfaces. In: Elad, Y., Williamson, B., Tudzynski, P., Delen, N. (eds) Botrytis: Biology, Pathology and Control. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2626-3_2

Download citation

Publish with us

Policies and ethics