Skip to main content

Itô Formula for Generalized Functionals of Brownian Bridge

  • Conference paper
  • 212 Accesses

Abstract

Employing the calculus on the classical Wiener space (C′, C) we represent the Brownian motion {B(t)} by B(t, x) = (x, α t) for xC, where (·, ·) is the CC * pairing and α t is a function in C* such that α t (s) = min{t, s} for t ∈ [0, 1] and for s < t. It follows that Brownian bridge is represented by X (t, x) = (x, βt) for xC, where βt = αt − tα 1. Using such a representation, we define and study the generalized functionals associated with the Brownian bridge. It is shown that Itˆo formula for Brownian bridge may be derived without using the classical stochastic integration theory. In order to compare the Itˆo formula of Brownian bridge with the formula under the scheme of semimartingale theory we also consider the semimartingale version of the Brownian bridge represented by \(\hat{X}(t,x) = (x,{{\hat{\beta }}_{t}})\) , for xC, where \({{\hat{\beta }}_{t}}(s) = - (1 - t)\ln (1 - s \wedge t)\) for t < 1 and \({{\hat{\beta }}_{1}} \equiv 0\) . Its is shown that the Itô formula depends only on the variance parameter t(1 − t) of the Brownian bridge.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gross L.: Abstract Wiener Space, In “Proceedings 5th Berkeley Symp. Math. Stat. Probab.”, vol.2, 31–42, 1965

    Google Scholar 

  2. Hida T.: Brownian Motion, Springer-Verlag, 1980

    Google Scholar 

  3. Kallianpur G.: Stochastic Filtering Theory, Springer-Verlag, 1980

    Google Scholar 

  4. Klebaner F. C.: Introduction to stochastic calculus with applications, Imperial College Press, 1998

    Google Scholar 

  5. Köthe G.: Topological Vector Space I, Springer-Verlag, New York/ Heidelberg/ Berlin, 1966

    Google Scholar 

  6. Kuo H.-H.: Gaussian Measures in Banach Spaces, Lecture Notes in Math. Vol.463, Springer-Verlag, 1975

    Google Scholar 

  7. Kuo H.-H.: White Noise Distribution Theory, CRC press, 1996.

    Google Scholar 

  8. Lee Y.-J.: Generalized Functions on Infinite Dimensional Spaces and its Application to White Noise Calculus, J. Funct. Anal. 82 (1989) 429–464

    Article  MathSciNet  Google Scholar 

  9. Lee Y.-J.: Generalized White Noise Functionals on Classical Wiener Space, J. Korean Math. Soc. 35, No. 3 (1998) 613–635

    MathSciNet  MATH  Google Scholar 

  10. Lee Y.-J.: On the convergence of Wiener-Itˆo decomposition, Bull. Inst. Math. Acad. Sinica 17 (1989) 305–312

    MathSciNet  MATH  Google Scholar 

  11. Lee Y.-J.: Analytic version of test functionals, Fourier transform and a characterization of measures in white noise calculus, J. Funct. Anal. 100 (1991) 359–380

    Article  MathSciNet  MATH  Google Scholar 

  12. Lee Y.-J.: Positive generalized functions on infinite dimensional spaces, In “Stochastic Process, a Festschrift in Honour of Gopinath Kallianpur”, Springer-Verlag, 1993, 225–234

    Google Scholar 

  13. Lee Y.-J.: Convergence of Fock expansion and transformations of Brownian functionals, in “Functional Analysis and Global Analysis”, Edited by T. Sunada and P.-W. Sy, Springer-Verlag, 1997, 142–156

    Google Scholar 

  14. Lee Y.-J.: Integral representation of second quantization and its application to white noise analysis, J. Funct. Anal. 133 (1995) 253–276

    Article  MathSciNet  MATH  Google Scholar 

  15. Lee Y.-J., Shih H.-H.: Generalized Clark formula on the classical Wiener space, preprint.

    Google Scholar 

  16. Meyer P. -A., Yan J.-A.: Les “fonctions caractéristiques” des distributions sur l’espace de Wiener, in “S´em. Probab. XXV”, Lecture Notes in Math., Vol. 1485, 1991, 61–78

    Google Scholar 

  17. Revuz D., Yor M.: Continuous Martingales and Brownian Motion, Springer-Verlag, 1992

    Google Scholar 

  18. Watanabe S.: Lectures on Stochastic Differential Equations and Malliavin Calculus, Tata Inst. of Fundamental Research, Bombay, 1984

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Lee, YJ., Huang, CC. (2004). Itô Formula for Generalized Functionals of Brownian Bridge. In: Albeverio, S., de Monvel, A.B., Ouerdiane, H. (eds) Proceedings of the International Conference on Stochastic Analysis and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2468-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2468-9_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6661-9

  • Online ISBN: 978-1-4020-2468-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics