Skip to main content

Van der Waals Energies in the Formation and Interaction of Nanoparticle Aggregates

  • Chapter
Gas Phase Nanoparticle Synthesis

Abstract

Research on nanoparticles is motivated by (1) their intrinsic properties, (2) the properties of the structures created from them, and (3) the effects they and their structures have on materials or larger structures where they are deposited or embedded. For implementing a process-level description of the formation of these structures, a quantitative treatment of the physical factors involved in their assembly from isolated nanoparticulate elements is useful. In addition to transport, such a description must include interaction potential energies not only between individual, isolated spherical particles but it must also account for multiparticle interactions such as spheres with aggregates of nanoparticles, aggregates with aggregates, etc. Such a hierarchy of interactions involves multiple length scales and must account correctly for all levels of interactions on a basis that is internally consistent from one length scale to the next. This contribution reviews recent progress by the author and his colleagues in the formulation of the multiscale van der Waals interaction energy, including the onset of retardation, and its many-body generalizations for the purpose of accounting for the formation of aggregates of nanoparticles and applications elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Venkatesh, R., R. R. Lucchese, W. H. Marlow, J. Schulte, 1995. Thermal collision rate constants for small nickel clusters of size 2–14 atoms. J. Chem. Phys. 102,7683–7699.

    Article  CAS  Google Scholar 

  2. Hong, Seunghun, C. A. Mirkin, 2000. A nanoplotter with both parallel and serial writing capabilities. Science 288, 1808–1811.

    Article  CAS  Google Scholar 

  3. Suzuki, Nobuyasu, Toshiharu Makino, Yuka Yamada, Takehito Yoshida, Seinosuke Onari, 2000. Structures and optical properties of silicon nanocrystallites prepared by pulse-laser ablation in inert background gas. Appl. Phys. Lett. 76, 1389–1391.

    Article  CAS  Google Scholar 

  4. Croce, F., G. B. Appetecchi, L. Persi, B. Scrosati, 1998. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458.

    Article  CAS  Google Scholar 

  5. Solis, J. L., A. Hoel, L. B. Kish, C. G. Granqvist, S. Saukko, V. Lantto, 2001. Gas sensing properties of nanocrystalline WO3films made by advanced reactive gas deposition. J. Am. Ceram. Soc. 84, 1504–1508.

    Article  CAS  Google Scholar 

  6. Xie, Jianyong, W. H. Marlow, 1997. Water vapor pressure over complex particles I: Sulfuric acid solution effect. Aerosol Sci Technol. 27, 591–603

    Article  CAS  Google Scholar 

  7. Fang, J. X., W. H. Marlow, J. X. Lu, R. R. Lucchese, 1997. Monte Carlo studies of the effects of substrate size on the water-substrate interaction energy and water structure. J. Chem. Phys. 107, 5212–5216.

    Article  CAS  Google Scholar 

  8. Shalaev, V. M., 2000. Nonlinear Optics of Random Media. Berlin: Springer.

    Google Scholar 

  9. Marlow, W. H., 1982. Lead aerosol Brownian collision rates at normal and elevated temperatures: Theory. J. Colloid Interface Sci. 87, 209–215.

    Google Scholar 

  10. Wang, G. M., C. M. Sorensen, 2001. Aggregation kernel homogeneity for fractal aggregate aerosols in the slip regime. Aerosol Sci. Technol. 34, 297.

    CAS  Google Scholar 

  11. Arunachalam, V., R. R. Lucchese, W. H. Marlow, 1999. Simulations of aerosol aggregation including long-range interactions. Phys. Rev. E 60, 2051–2064.

    Article  CAS  Google Scholar 

  12. Mostepanenko, V. M., N. N. Trunov, 1997. The Casimir Effect and its Applications. Oxford: Clarendon.

    Google Scholar 

  13. Mahanty, J., B. W. Ninham, 1976. Disperson Forces. London & New York: Academic.

    Google Scholar 

  14. Casimir, H. G. B., D. Polder, 1948. The influences of retardation on the London-van der Waals forces, Phys. Rev. 73, 360–372.

    Article  CAS  Google Scholar 

  15. Lifshitz, E. M., 1956. The theory of attractive forces between solids. Soviet Phys. 2, 73–83.

    Google Scholar 

  16. Langbein, D., 1971. Microscopic calculation of macroscopic dispersion energy. J. Phys. Chem. Solids 32, 133–138.

    Google Scholar 

  17. Langbein, D., 1971. Non-retarded dispersion energy between macroscopic spheres. J. Phys. Chem. Solids 32, 1657–1667.

    Article  CAS  Google Scholar 

  18. Kiefer, H. E., V. A. Parsegian, G. H. Weiss, 1978. Some convenient bounds and approximations for the many body van der Waals attraction between two spheres. J. Colloid Interface Sci. 67, 140–153.

    Google Scholar 

  19. Langbein, D., 1974. Theory of Van der Waals Attraction. Berlin & New York: Springer.

    Google Scholar 

  20. Marlow, W H., 1980. Lifshitz-van der Waals forces in aerosol particle collisions: Introduction; water droplets. J. Chem. Phys. 73, 6288–6295.

    Article  CAS  Google Scholar 

  21. Arunachalam, V., 1996. Ultrafine Aerosol Particles: Long-Range Interactions, Aggregation Kinetics and Structure. Ph.D. Dissertation, Texas A & M University (unpublished).

    Google Scholar 

  22. Arunachalam, V., W. H. Marlow, J. X. Lu, 1998. Development of a picture of the van der Waals interaction energy between clusters of nanometer-range spherical particles. Phys. Rev. E 58, 3451–3457.

    Google Scholar 

  23. Amadon, A., W. H. Marlow, 1991. Cluster collision frequency I: The long-range intercluster potential. Phys. Rev. A 43, 5483–5492.

    Article  CAS  Google Scholar 

  24. Lu, J. X., W. H. Marlow, 1995. Universal non-singular van der Waals potentials. Phys. Rev. Lett. 74, 1724–1727

    Article  CAS  Google Scholar 

  25. Lu, J. X., W. H. Marlow 1995. Non-singular van der Waals potentials. Phys. Rev. A 52, 2141–2154.

    Article  CAS  Google Scholar 

  26. Lu, J. X., W. H. Marlow, 1997. Non-singular multipole dispersion forces. Phys. Leu. A 230, 197–202.

    Google Scholar 

  27. Kubo, Ryogo, 1957. Statistical-mechanical theory of irreversible processes: I. J. Phys. Soc. Jpn. 12, 570–586.

    Article  Google Scholar 

  28. Lu, J. X., W. H. Marlow, V. Arunachalam, 1996. Non-singular van der Waals potentials for non-conducting condensed bodies. J. Colloid Interface Sci.181, 429–442.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marlow, W.H. (2004). Van der Waals Energies in the Formation and Interaction of Nanoparticle Aggregates. In: Granqvist, C., Kish, L., Marlow, W. (eds) Gas Phase Nanoparticle Synthesis. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2444-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2444-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6657-2

  • Online ISBN: 978-1-4020-2444-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics