Advertisement

Attenuation Mapping of Living Cells at Hypersonic Frequencies

  • Chiaki Miyasaka
  • Bernhard R. Tittmann
Conference paper
Part of the Acoustical Imaging book series (ACIM, volume 27)

Abstract

A mechanical scanning acoustic reflection microscope (SAM) with frequency at 1.0 GHz was used for imaging a living human skin cancer cell when applying the thermal insult to it. First, for finding the heat effect of the cell, we located a chamber having the heating plate with temperature controller on the X-Y stage of the SAM. The cell was grown on the surface of the sapphire substrate to maximize the difference in attenuation for visualizing the cells with frequency at 1.0 GHz. We gradually increased the temperature of the culturing medium from 37.5°C to 50°C, and carried out in-situ observation. The phenomena indicating cellular insult and injury (e.g. shrinkage, volume change or lift-off) were clearly visualized.

Keywords

Melanoma Cell Sapphire Substrate Attenuation Mapping Heating Plate Curve Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Atalar, C. F. Quate, and H. K. Wickramasinge, “Phase imaging in reflection with acoustic microscope,” Appl. Phys. Lett., 31 (1977), p.791ADSCrossRefGoogle Scholar
  2. 2.
    R. A. Lemons and C. F. Quate, Acoustic microscopy. Physical Acoustics XIV (ed by W. P. Mason and R. N. Thurston), (1979), p.1, Academic Press, LondonGoogle Scholar
  3. 3.
    J. A. Hildebrand, D. Rugar, R. N. Johnston, and C. F. Quate, “Acoustic microscopy of living cells,” Proc. National Academy of Science 78(3), (1981), p.1656ADSCrossRefGoogle Scholar
  4. 4.
    K. Beck and J. Bereiter-Hahn, “Evaluation of reflection interference contrast microscopy images of living cells,” Micros. Acta 84 (1981), p.153Google Scholar
  5. 5.
    J. Bereiter-Hahn, “Scanning acoustic microscopy visualizes cytomechanical responses to cytochalasin D,” J. Microsc. 146 (1986), p.29CrossRefGoogle Scholar
  6. 6.
    J. Bereiter-Hahn and H. Lüers, “Shape changes and force distribution in locomoting cells. Investigation with reflected light and acoustic microscopy,” Eur. J. Cell Biol. 53: Suppl. 31, (1990), p.85Google Scholar
  7. 7.
    H. Lüers, K. Hillmann, J. Litniewski, and J. Bereiter-Hahn, “Acoustic microscopy of cultured cell: distribution of forces and cytokeletal elements,” Cell Biophys. 18, (1992), p.279Google Scholar
  8. 8.
    J. Bereiter-Hahn and H. Lüers, In “Mechanics of Actively Locomoting Cells,” (N. Akkas, ed.) ASI series 84 Springer, Heidelberg, New York, Berlin, (1994), p.181CrossRefGoogle Scholar
  9. 9.
    J. Bereiter-Hahn, J. Litniewski, K. Hillmann, A. Krapohl, and L. Zylberberg, “What can scanning acoustic microscopy tell about animal cells and tissues?” Acoust. Imaging 17 (1992), p.27CrossRefGoogle Scholar
  10. 10.
    J. Bereiter-Hahn, R. Strohmeier, and K. Beck, “Determination of the thickness profile of cells with the reflection contrast microscope,” Scient. Techn. Inf 8 (1983), p.125Google Scholar
  11. 11.
    R. Strohmeier and J. Bereiter-Hahn, “Hydrostatic pressure in epidermal cells is dependent on Camediated contraction,” J. Cell Sci. 88 (1987), p.631Google Scholar
  12. 12.
    J. A. Hildebrand and D. Rugar, “Measurement of cellular elastic properties by acoustic microscopy,” J. Microsc. 134 (1990), p.245CrossRefGoogle Scholar
  13. 13.
    J. Litniewski and J. Bereiter-Hahn, “Measurement of cells in culture by scanning acoustic microscopy,” J. Microsc. 158 (1990), p.95CrossRefGoogle Scholar
  14. 14.
    C. M. W. Daft and G. A. D. Briggs, “The elastic microstructure of various tissues,” J. Acoust. Soc. Am. 85 (1989), p.416ADSCrossRefGoogle Scholar
  15. 15.
    C. M. W. Daft, G. A. D. Briggs, and W. D. O’Brien, “Frequency dependence of tissue attenuation by acoustic microscopy,” J. Acoust. Soc. Am. 85 (1989), p.2194ADSCrossRefGoogle Scholar
  16. 16.
    N. Akashi, J. Kushibiki, and N. Chubachi, “Quantitative characterization of biological tissues by acoustic microscopy-effect of multiple reflection and viscosity,” Technical Report of the IECE 43.80 Ev. 43, (1989), p.767Google Scholar
  17. 17.
    J. Wang, R. Gundle, and G. A. D. Briggs, “The measurement of acoustic properties of living human cells,” Trans. Roy. Microsc. Soc. Vol. 1 (ed. By H. Y. Elder)(1990), p.91Google Scholar
  18. 18.
    G. A. D. Briggs, J. Wang, and R. Gundle, “Quantitative acoustic microscopy of individual living human cells,” J. Microsc. 91, (1992), p.3008Google Scholar
  19. 19.
    T. Kundu, J. Bereiter-Hahn, and K. Hillmann, “Calculating acoustical properties of cells: influence of surface topography and liquid layer between cell and substrate,” J. Acoust. Soc. Am. 85, (1989), p.2194CrossRefGoogle Scholar
  20. 20.
    A. Atalar, “An angular-spectrum approach to contrast in reflection acoustic microscopy”, J Appl. Phys. 49(10) (1978), p.5130ADSCrossRefGoogle Scholar
  21. 21.
    R. D. Weglein, “A model for predicting acoustic material signatures”, Appl. Phys. Lett. 34(3) (1979), p.179ADSCrossRefGoogle Scholar
  22. 22.
    A. Atalar, “A physical model for acoustic signature”, J. Appl. Phys. 50(12), (1979), p.8237ADSCrossRefGoogle Scholar
  23. 23.
    W. Parmon and H. L. Bertoni, “Ray interpretation of the material signature in acoustic microscope”, Electron. Lett. 15(21), (1979), p.684Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Chiaki Miyasaka
    • 1
  • Bernhard R. Tittmann
    • 1
  1. 1.The Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations