Principle, Applications and Limitations of Ultrasound Elastography

  • K. M. Hiltawsky
  • W. Khaled
  • A. Lorenz
  • C. Perrey
  • A. Pesavento
  • U. Scheipers
  • S. Siebers
  • M. Vogt
  • H. Ermert
Part of the Acoustical Imaging book series (ACIM, volume 27)

Abstract

Mechanical properties of biological tissue are of histological relevance because of a correlation between palpable lesions (e.g. nodes) and malignant tumors. The majority of cancerous lesions can be palpated as hard inclusions, at least after they have reached a certain size. However, there are also benign changes in tissue, which tend to be harder compared to surrounding tissue. As manual palpation is limited to the skills of the examiner and contributes only subjective and qualitative information, an imaging modality could be helpful, which provides the examiner with objective and quantitative information about mechanical properties of the examined tissue. Medical ultrasound imaging systems allow a visualization of internal mechanical tissue displacements caused by external surface forces or by induced internal forces. The spatial distribution of internal strain can be derived from tissue displacements to get so called “elastograms” [5], which lead to a visualization of both, the location and size of stiff tissue areas.

Keywords

Cross Correlation Acoustics Weinstein Starke 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Céspedes EI, M. Insana, J. Ophir. Theoretical Bounds on Strain Estimation in Elastography. IEEE Trans. Ultrason. Ferroelect. Frequency Contr. 1995;42:969–972.CrossRefGoogle Scholar
  2. 2.
    Hiltawsky KM, Krueger M, Starke C, Heuser L, Ermert H, Jensen A. Freehand Ultrasound Elastography of Breast Lesions: Clinical Results. Ultrasound in Medicine and Biology 2001; 27(11):1461–1469.CrossRefGoogle Scholar
  3. 3.
    Monkman GJ. An Electro-rheological Tactile Display. Journal of Teleoperators and Virtual Environments 1991; 1(2):219–228.Google Scholar
  4. 4.
    O’Donnell M, Skovoroda AR, Shapo BM, Emelianov SY. Internal Displacement and Strain Imaging Using Ultrasonic Speckle Tracking. IEEE Trans. Ultrason. Ferroelect. Frequency Contr. 1999;41:314–325.CrossRefGoogle Scholar
  5. 5.
    Ophir J, Céspedes EI, Ponnekanti H, Yazdi Y, Li X. Elastography: A quantitative method for imaging the elasticity of biological tissues. Ultrasonic Imaging 1991;13:111–134.Google Scholar
  6. 6.
    Pesavento A, Lorenz A, Ermert H. System for real-time elastography. Electronics Letters 1999;35(11):941–942.CrossRefGoogle Scholar
  7. 7.
    Pesavento A, Perrey C, Krueger M, Ermert H. A Time-Efficient and Accurate Strain Estimation Concept for Ultrasonic Elastography Using Iterative Phase Zero Estimation. IEEE Trans. Ultrason. Ferroelect. Frequency Contr. 1999;46:1057–1067.CrossRefGoogle Scholar
  8. 8.
    Scheipers U, Ermert H, Lorenz A, Sommerfeld HJ, Garcia-Schürmann M, Senge T, Philippou S: Ultraschall-Gewebecharakterisierung für die Früherkennung von Prostatatumoren. Ultraschall in Med 2001; 22(1): 43.Google Scholar
  9. 9.
    Walker WF, Trahey GE. A Fundamental Limit on the Accuracy of Speckle Signal Alignment. IEEE Ultrasonics Symposium 1994; 1787–1791.Google Scholar
  10. 10.
    Weinstein E, Weiss AJ. Fundamental Limitations in Passive Time Delay Estimation — Part II: Wide Band Systems. IEEE Trans. Acoust., Speech, Sig. Proc. 1983; 31:1064–1078.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • K. M. Hiltawsky
    • 1
  • W. Khaled
    • 2
  • A. Lorenz
    • 1
  • C. Perrey
    • 1
  • A. Pesavento
    • 2
  • U. Scheipers
    • 1
  • S. Siebers
    • 1
  • M. Vogt
    • 1
  • H. Ermert
    • 1
  1. 1.Institute of Radio Frequency EngineeringRuhr-University BochumBochumGermany
  2. 2.LP-IT Innovative Technologies GmbHBochumGermany

Personalised recommendations