Skip to main content

Reverse Monte Carlo Analyses of Diffraction Data on Molecular Liquids

  • Chapter
  • 309 Accesses

Part of the book series: NATO Science Series ((NAII,volume 133))

Abstract

The way Reverse Monte Carlo (RMC) modelling facilitates the interpretation of diffraction data taken on molecular liquids is described. It is suggested that the subtraction of the infra-molecular contributions, which is prone to numerical errors, can successfully be replaced by modelling the full structure factor using flexible molecular units in the RMC simulation. Moreover, details of the molecular structure in the liquid state may also be obtained in such a way, as will be demonstrated by the example of molten tungsten-hexachloride. It is shown that in many cases, one single total structure factor can provide information on the partial pair correlations. The required scattering vector range for a successful experiment is also discussed: the indications are that in a number of instances, measuring the structure factor up to about 10 Å-1 may be sufficient for capturing the most important features of the microscopic structure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hansen, J.-P., McDonald, I.R. (1986) The Theory of Simple Liquids,Academic Press, London.

    Google Scholar 

  2. Pusztai, L., McGreevy, R.L. (1999) MCGR: an Inverse Method for Deriving the Pair Correlation Function, J. Neutron Research 8. 17–35.

    Article  Google Scholar 

  3. Pusztai, L., McGreevy, R.L. (1998) The structure of molten CuBr, J. Phys. : Cond. Matter 10, 525–532.

    Article  ADS  Google Scholar 

  4. Narten, A.H., Danford, M.H., Levy, H.A. (1967) Structure and Intermolecular Potential of Liquid Carbon Tetrachloride Derived from X-ray Diffraction Data J. Chem. Phys. 46, 4875–4880.

    Article  ADS  Google Scholar 

  5. Montague, D.G., Chowdhury, M.R., Dore, J.C., Reed, J. (1983) A RISM analysis of structural data for tetrahedral molecular systems, Mol. Phys. 50,1–23.

    Article  ADS  Google Scholar 

  6. Bermejo, F.J., Enciso, E., Alonso, J., Garcia, N., Howells, W.S. (1988) How well do we know the structure of simple molecular liquids ? CC14 revisited, Mol. Phys. 64,1169–1184.

    Article  ADS  Google Scholar 

  7. Pusztai, L., McGreevy, R.L. (1997) MCGR: an inverse method for deriving the pair correlation function from the structure factor, Physica B 234–236,357–358.

    Google Scholar 

  8. Egelstaff, P.A., Page, D.I., Powles, J.G. (1971) Orientational correlations in molecular liquids by neutron scattering. Carbon tetrachloride and germanium tetrabromide, Mol. Phys. 20,881–894.

    Article  ADS  Google Scholar 

  9. Clarke, J.H., Dore, J.C., Gibson, I.P., Granada, J.R., Stanton, G.W. (1978) Neutron Diffraction Studies of Tetrachloride Liquids, Faraday Disc. Chem. Soc. 66,277–286.

    Article  Google Scholar 

  10. Enderby J.E., North D.N., Egelstaff P.A. (1966) The partial structure factors of liquid Cu-Sn, Phil. Mag. 14,961–970.

    ADS  Google Scholar 

  11. Soper A.K., Bruni F., Ricci M.A. (1997) Site-site correlation functions of water from 25 to 400 °C: Revised analysis of new and old diffraction data, J. Chem. Phys. 106,247–254.

    Article  ADS  Google Scholar 

  12. Bellisent-Funel, M.-C., Teixeira, J., Bosio, L. (1987) Structure of high density amorphous water. II. Neutron scattering study, J. Chem. Phys. 87,2231–2235.

    Article  ADS  Google Scholar 

  13. Allen, M.P., Tildesley, D.J (1987) Computer Simulation of Liquids,Clarendon Press, Oxford.

    MATH  Google Scholar 

  14. McGreevy, R.L., Pusztai, L. (1988) Reverse Monte Carlo Simulation: A New Technique for the Determination of Disordered Structures, Molec. Simul. 1,359- 367.

    Article  Google Scholar 

  15. Pusztai, L. (1998) Structural modelling using the reverse Monte Carlo technique: Application to amorphous semiconductors J. Non-Cryst. Sol. 227–230,88–95

    Article  ADS  Google Scholar 

  16. 15a. McGreevy, R.L. (2001) Reverse Monte Carlo modelling, J. Phys. : Cond. Matter 13,R877-R913.

    Article  ADS  Google Scholar 

  17. Pusztai, L., McGreevy, R.L. (1997) The structure of liquid CC14, Mol. Phys. 90,533–540.

    Article  ADS  Google Scholar 

  18. Pusztai, L., McGreevy, R.L. (1997) RMC: introduction of a new type of constraint for molecular systems and network glasses, Studsvik NFL Annual Report for 1996, OTH :21.

    Google Scholar 

  19. Jóvári, P., Mészáros, Gy., Pusztai, L., Sváb, E. (2001) The structure of liquid tetrachlorides CC14, SiC14, GeC14, TiC14, VC14 and SnCl4, J. Chem. Phys. 114,8082–8090.

    Article  ADS  Google Scholar 

  20. Evrard, G. (2003) The RMC++ software (private communication)

    Google Scholar 

  21. Howe, M.A., McGreevy, R.L. (1991) Determination of three body correlations in liquids by RMC modelling of diffraction data. I. Theoretical tests, Phys. Chem. Liq. 24,1–12.

    Article  Google Scholar 

  22. Gereben, O. and L Pusztai, L. (1994) Structure of amorphous semiconductors: Reverse Monte Carlo studies on a-C, a-Si and a-Ge’, Phys. Rev. B, 50,14136- 14143.

    Article  ADS  Google Scholar 

  23. Pusztai, L. (1999) On the partial pair correlation functions of liquid water, Phys. Rev. B 60,11851–11854.

    Article  ADS  Google Scholar 

  24. Pusztai, L. (2000) On the structure of high and low density amorphous ice, Phys. Rev. B 61,28–31.

    Article  ADS  Google Scholar 

  25. Pusztai, L., Gereben, O., Baranyai, A. (1994) Some remarks on the measured structure factor, Physica Scripta, T57,69–71.

    Google Scholar 

  26. Sváb, E., Mészáros, Gy., Deák, F. (1996) Neutron powder diffractometer at the Budapest reseach reactor, Materials Science Forum 228–231,247–252.

    Google Scholar 

  27. Jóvári, P., Mészáros, Gy., Pusztai, L., Sváb, E. (2000) Neutron diffraction studies on liquid CC14 and C2C14, Phyica B 276–278,491–492.

    Google Scholar 

  28. Gereben, O., Pusztai, L. (1995) Determination of the microscopic structure of disordered materials on the basis of limited Q-space information, Phys. Rev. B 51, 5768–5772.

    Google Scholar 

  29. Pusztai, L., McGreevy, R.L. (2003) The structure of simple molecular liquids SbC15, WC16 and CS2 (in preparation)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pusztai, L. (2004). Reverse Monte Carlo Analyses of Diffraction Data on Molecular Liquids. In: Samios, J., Durov, V.A. (eds) Novel Approaches to the Structure and Dynamics of Liquids: Experiments, Theories and Simulations. NATO Science Series, vol 133. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2384-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2384-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1847-3

  • Online ISBN: 978-1-4020-2384-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics