Phase Transformations and Orientational Ordering in Chemically Disordered Polymers — a Modern Primer

  • Lorin Gutman
  • Eugene Shakhnovich
Chapter
Part of the NATO Science Series book series (NAII, volume 133)

Abstract

We review recent theoretical and experimental developments in the field of complex polymers that carry a chemical and topological disorder. The polymer classes discussed include chemically disordered crosslinked heteropolymers and liquid crystalline heteropolymers. Field theory and spin glass averaging methods are very useful to study complex disordered polymers. The field theory allows explicit account of chain conformation contributions to thermodynamical quantities and a faithful representation of experimentally observable order parameters. Spin glass averaging methods presented here are instrumental for averaging over chemical and topological disorders. The review centers on theory development, predictions for conformational and orientational ordering, phase diagram analysis and also comparison with experimental results when possible.

Random heteropolymers (RHPs) with physical crosslinks are shown to exhibit three globular phases: frozenglobular with micro-domain structure, random-globular and frozen-randomglobular. For RHPs with chemical crosslinks our theory predicts three frozen-globular phases, and one random-globular phase; the intra-frozen transitions are conformational transitions which do not require any re-entrant passages via the random-globular phase. The phase diagram of crosslinked RHPs is systematically explored in parameter and thermodynamic variable space, and physical explanations for the conformational organization and the order of the phase transitions is provided.

The second class of disordered polymers we review are manychain mesogen/flexible disordered copolymers (DLCP). A field theory and creation-annihilation summation rules are proposed to carry out coupled orientational and conformational averages of polymer chain conformations in these complex systems. Predictions for the effect of flexibility, stiffness and inter-segment alignment on orientational ordering, the nematic/isotropic density threshold and the segmental orientational ordering at the nematic/isotropic transition is discussed in close proximity to experimental studies.

Keywords

Entropy Anisotropy Petroleum Glutathione Propen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. R. C. Boyde, J. Chromatogr., 124, 219, (1976)CrossRefGoogle Scholar
  2. 2.
    R. W. Veatch, J. Pet. Technol, 677, April (1983)Google Scholar
  3. 3.
    R. A. Siegel, M. Galamarzian, B. A. Firestone, and B. C. Moxley, J. Control Release, 8, 179, (1988)CrossRefGoogle Scholar
  4. 4.
    Biopolymer Gels, A. L. Clark, Curr. Opin.in Coll. and Int. Sci., 6, 712, (1996)Google Scholar
  5. 5.
    Textbook of Polymer Science, John Wiley and Sons, F. W. Billmeyer, (1971)Google Scholar
  6. 6.
    T. Tanaka, C. Wang, V. Pande and A. Yu. Grosberg, Faraday Discus., 102, 201, (1996)Google Scholar
  7. 7.
    A. Keller, Faraday Discuss., 101, 1, (1995)ADSCrossRefGoogle Scholar
  8. 8.
    S. Panyukov and I. Rabin, Phys. Rep., 269, 1, (1996)ADSCrossRefGoogle Scholar
  9. 9.
    P. M. Goldbardt, H.E. Castillo and A. Zippelius, Adv. Phys., 45, 393, (1996)ADSCrossRefGoogle Scholar
  10. 10.
    L. Gutman and E. I. Shakhnovich, J. Chem. Pins., 107. 1247, (1997)ADSCrossRefGoogle Scholar
  11. 11.
    L. Gutman and E. I Shakhnovich, J. Chem. Phys., 109, 2947, (1998)ADSCrossRefGoogle Scholar
  12. 12.
    M. Annaka and T. Tanaka, Nature, 355, 430, (1992)ADSCrossRefGoogle Scholar
  13. 13.
    P. G. deGennes, J. Phys. Lett., 69, 40, (1979)Google Scholar
  14. 14.
    R. M. Briber and B. J. Bauer, Macromolecules, 21, 3296, (1988)ADSCrossRefGoogle Scholar
  15. 15.
    L. Chikina, M. Daoud, J. Polym. Sci. B, 36, 1507, (1998)CrossRefGoogle Scholar
  16. 16.
    M. Annaka, T. Tanaka, Phys. A, 40, (1994)Google Scholar
  17. 17.
    T. Shiomi, H. Ishimatsu, T. Eguchi and K. Imai, Macromol., 23, 4970, (1990)ADSCrossRefGoogle Scholar
  18. 18.
    E. I. Shakhnovich and A. M. Gutin, J. Phys. (Fr), 50, 1843, (1989)CrossRefGoogle Scholar
  19. 19.
    V. S. Pande, A. Y. Grosberg, and T. Tanaka, J. Phys. II France, 4, 1771, (1994)CrossRefGoogle Scholar
  20. 20.
    F. Rindfleisch, T. P. DiNoia, and M. A McHugh, J. Phys. Chem. 100, 15581, (1996)CrossRefGoogle Scholar
  21. 21.
    R. C. Sutton, L. Thai, J. M. Hewitt, C. L. Voycheck, and J. S. Tan, Macromol., 21, 2432, (1988)ADSCrossRefGoogle Scholar
  22. 22.
    D. Bratko, A. K. Chakraborty, E.I. Shakhnovich, J. Chem. Phys., 106, 1264, (1997)ADSCrossRefGoogle Scholar
  23. 23.
    G. H. Fredrickson and S. T. Milner, Phys.Rev.Lett., 67, 835, (1991)ADSCrossRefGoogle Scholar
  24. 24.
    A. M. Gutin and E. I. Shakhnovich, J. Chem. Phys. 100, 5290, (1994)ADSCrossRefGoogle Scholar
  25. 25.
    L. Gutman and E.I. Shakhnovich, J. Chem. Phys., in preparationGoogle Scholar
  26. 26.
    L. Gutman and E.I. Shakhnovich, M. Shibayama, M. Annaka Phys. Rev. Lett., in preparationGoogle Scholar
  27. 27.
    F. Simoni Liq. Cryst., 24, 83, (1998)CrossRefGoogle Scholar
  28. 28.
    T. E. Creighton, BioEssays, 8, 57, (1988)Google Scholar
  29. 29.
    L. Gutman and E. I. Shakhnovich, J. Chem. Phys., 107, 1247, (1997)ADSCrossRefGoogle Scholar
  30. 30.
    L. Gutman and E. I. Shakhnovich, J. Chem. Phys., 109, 2947. (1998)ADSCrossRefGoogle Scholar
  31. 31.
    P. M. Goldbardt, H.E. Castillo and A. Zippelius, Adv. Chem. Phys., 45, 393, (1996)CrossRefGoogle Scholar
  32. 32.
    A. M. Gutin and E. I. Shakhnovich, J. Chem. Phvs. 100. 5290. (1994)ADSCrossRefGoogle Scholar
  33. 33.
    E. I. Shakhnovich and A. M. Gutin, Biophys. Chem., 34, 187, (1989)CrossRefGoogle Scholar
  34. 34.
    Gi. Parisi, J. Phys. A: Math. Gen., 13, 1887, (1990);ADSCrossRefGoogle Scholar
  35. 34a.
    M. Mezard and G. Parisi, J. Phys. I, 1, 809, (1991)CrossRefGoogle Scholar
  36. 35.
    P. J. Flory, Proc. Roy. Soc. 234, 73, (1956)ADSCrossRefGoogle Scholar
  37. 36.
    L. Onsager Ann. N. Y. Acad. Sci., 51a, 627, (1949)ADSCrossRefGoogle Scholar
  38. 37.
    W. Maier and A. Z. Saupe Naturoforsch, 12, 882, (1959)ADSGoogle Scholar
  39. 38.
    A. Yu Grosberg and A. R. Khokhlov Soc. Sci. Rev. A. Phys., 8. 147. (1987)Google Scholar
  40. 39.
    P. J. Flory and G. Ronca Mol. Crys. Liq. Cryst., 54, 289, (1979)CrossRefGoogle Scholar
  41. 40.
    B. Y. Ha and D. Thirumalai J. Chem. Phys., 106, 4243. (1997)ADSCrossRefGoogle Scholar
  42. 41.
    B. Jung and B. L. Schurman Macromol., 22, 477, (1989)ADSCrossRefGoogle Scholar
  43. 42.
    R. D. Kamier and G. S. Grest Phys. Rev. E, 55, 1197. (1997)ADSCrossRefGoogle Scholar
  44. 43.
    M. Dijkstra and D. Frenkel Phys. Rev. E, 51, 5891. (1995)ADSCrossRefGoogle Scholar
  45. 44.
    Z. Y. Chen Macromol., 26, 3419, (1993)ADSCrossRefGoogle Scholar
  46. 45.
    A. R. Khokhlov and A. N. Semenov Physica Amsterdam, 112A, 605, (1985)ADSGoogle Scholar
  47. 46.
    R. Podgornick Phys. Rev. E., 54, 5268, (1996);ADSCrossRefGoogle Scholar
  48. 46a.
    R. Podgornick ibid Phys. Rev. E., 52, 5170, (1995)ADSCrossRefGoogle Scholar
  49. 47.
    R. K. Baharadwaj and R. H. Boyd Macromol., 31, 7682. (1998)ADSCrossRefGoogle Scholar
  50. 48.
    G. D. Butzbach, J. H. Wendorff and H. J. Zimmermann MaKromol. Chem. Rapid Commun., 6, 821, (1985)CrossRefGoogle Scholar
  51. 49.
    G. C. Rutledge Macromol., 25, 3984, (1992)ADSCrossRefGoogle Scholar
  52. 50.
    V. Percec and Y. Tsuda Macromol., 55, 1197, (1997)Google Scholar
  53. 51.
    A. Blumstein and T. Oomanan Macromol., 15, 1264, (1982)ADSCrossRefGoogle Scholar
  54. 52.
    J. S. Moore and S. I. Stupp Macromol., 20, 273, (1987)ADSCrossRefGoogle Scholar
  55. 53.
    P. G. Martin and S. I. Stupp Macromol, 21, 1222, (1988);ADSCrossRefGoogle Scholar
  56. 53a.
    P. G. Martin and S. I. Stupp Macromol, 21, 1288, (1988)CrossRefGoogle Scholar
  57. 54.
    G. H. Fredrickson and L. Leibler Macromol., 23, 531. (1990)ADSCrossRefGoogle Scholar
  58. 55.
    S. I. Stupp, S pp, J. S. Moore, and P. G. Martin Macromol., 21, 1228, (1988)ADSCrossRefGoogle Scholar
  59. 56.
    L. Gutman and A. K. Chakraborty J. Chem. Phys., 101, 10074, (1994);ADSCrossRefGoogle Scholar
  60. 56.
    L. Gutman and A. K. Chakraborty J. Chem. Phys., 103, 10733, (1995)ADSCrossRefGoogle Scholar
  61. 57.
    A. M. Gupta and S. F. Edwards J. Chem. Phys., 98, 1588, (1993)ADSCrossRefGoogle Scholar
  62. 58.
    K. F. Freed Adv. Chem. Phys., 22, 1, (1972)CrossRefGoogle Scholar
  63. 59.
    K. Binder and A. P. Young Rev. Mod. Phys., 58, 801, (1986)ADSCrossRefGoogle Scholar
  64. 60.
    M. Swanson Path Integrals and Quantum Processes, Academic Press, INC, Harcourt Brace Jovanovich, Publishers (1992)Google Scholar
  65. 61.
    B. Carnahan, H A. Luther and J.O. Wilkes Applied Numerical Methods (Wiley New York), (1969)Google Scholar
  66. 62.
    V. Percec and Y. Tsuda Macromol, 23, 3509, (1990)ADSCrossRefGoogle Scholar
  67. 63.
    A. Blumstein R. B. Blumstein, M. M. Gauthier, O. Thomas and J. Asrar Mil. Cryst., Liq. Cryst. (LeTT.), 92, (1983), 87CrossRefGoogle Scholar
  68. 64.
    J. E. Mark Physical Properties of Polymers Handbook AIP Press, Woodbury NY, (1996)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Lorin Gutman
    • 1
    • 2
  • Eugene Shakhnovich
    • 3
  1. 1.Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUSA
  2. 2.Department of ChemistryMassachussets Insititute of TechnologyCambridgeUSA
  3. 3.Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUSA

Personalised recommendations