Skip to main content

Genetic Transformation of Sunflower (Helianthus Annuus L.)

  • Chapter
Transgenic Crops of the World

Abstract

The world production of oilseed crops has more than doubled in the last 30 years, estimated at 318 million metric tonnes (MT) against 128 million MT in 1973–74 (1). Soybean accounts for 57% of the world production, followed by rape and cotton (each approx. 12%), ground nut (8%) and sunflower (7%). United States are the leaders for global oilseed crop production, providing 90 million MT (30%) to the world market. The European Union (EU), with a production of 15 million MT in 2002, is the 6th largest producer after the USA, China, Brazil, Argentina and India. Although sunflower seed production seems to be lagging behind other crops, its culture has regained interest since 1973 in Europe, with the anticipation of dependency on America for provision of plant proteins. In 2001, the EU was third for sunflower seed production (3.6 million MT) after Ex-USSR (6.33 million MT) and Argentina (5.4 million MT). Sunflower oil world production now ranks 4th after soybean, palm and rape, the leaders being Russia and Ukraine, followed by the EU and Argentina. Within the EU, the production of oilseed crops has multiplied 5-fold between 1980 (3 million MT) and 2001 (13.6 million MT). Sunflower is the second most important cultivated crop after oilseed rape. Cultivated surfaces of EU oil-seed crops near 5.4 million acres, 37% being devoted to sunflower.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amsol: Le marché du tournesol-Février 2002 http://www.amsol.asso.fr.

  2. Antolin G, Tinaut FV, Briceno Y, Castano V, Perez C and Ramirez AI (2002). Optimisation of hiodiesel nroduction by sunflower oil transesterification. Bioresource Technology, 83: 111–114.

    Article  PubMed  CAS  Google Scholar 

  3. Parant B (2001). Les huiles de colza et de tournesol: une source d’approvisionnement majeure pour les tensioactifs de demain. Oléagineux, Corps gras, Lipides, 8:152–154.

    CAS  Google Scholar 

  4. Alibert G, Mouloungui Z and Boudet AM (1996). Method for producing fatty acids or derivatives thereof from oil plants. International Patent W096/03511. • .

    Google Scholar 

  5. Alibert G, Mouloungui Z, Grison R and Romestan M (2001). Libération des acides gras par autolyse enzymatique des triglycérides des graines oléoprotéagineuses. Oléagineux, Corps gras, Lipides, 8: 98–102.

    CAS  Google Scholar 

  6. Pearson CH, Brichta JL, Van Fleet JE and Cornish K (2002). The potential of sunflower as a rubber-producing crop for the United States. ASA-CSSA-SSSA Annual Meetings, Nov. 10–14, Indianannlis Indiana. USA.

    Google Scholar 

  7. Hahne G (2002). Sunflower seed. In: Khachatourians GG, McHugen A, Scorza R, Nip WK, Hui YH (eds.), Transgenic Plants and Crops. Marcel Dekker, New York, USA.

    Google Scholar 

  8. De Ropp RS (1946). The isolation and behavior of bacteria-free crown-gall tissue from primary galls of Helianthus annuus. Phytopathology, 37: 201–206.

    Google Scholar 

  9. Potrykus I (1990). Gene transfer to cereals: an assessment. Bio/Technology, 8: 535–542.

    Article  CAS  Google Scholar 

  10. Laparra H, Burrus M, Hunold R, Damm B, Bravo-Angel AM, Bronner R and Halme G (1995). Expression of foreign genes in sunflower (Helianthus annuus L.) — evaluation of three gene transfer methods. Euphytica, 85: 63–74.

    Article  CAS  Google Scholar 

  11. Espinasse A and Lay C (1989). Shoot regeneration of callus derived from globular to torpedo embryos from 59 sunflower genotypes. Crop Science, 29: 201–205.

    Article  Google Scholar 

  12. Punia MS and Bohorova NE (1992). Callus development and plant regeneration from different explants of six wild species of sunflower (Helianthus L.). Plant Science, 87: 79–83.

    Article  Google Scholar 

  13. Alibert G, Aslane-Chanabé C, Burrus M (1994). Sunflower tissue and cell cultures and their use in biotechnology. Plant Physiology & Biochemistry, 32: 31–44.

    CAS  Google Scholar 

  14. Ceriani MF, Hopp HE, Hahne G and Escandon AS (1992). Cotyledons: an explant for routine regeneration of sunflower plants. Plant Cell Physiology. 33: 157–164.

    Google Scholar 

  15. Greco B, Tanzarella OA, Carrozzo G and Blanco A (1984). Callus induction and shoot regeneration in sunflower (Helianthus annuus L.). Plant Science Letters, 36: 73–77.

    Article  Google Scholar 

  16. Paterson KE (1984). Shoot tip culture of Helianthus annuus - flowering and development of adventitious and multiple shoots. American Journal of Botany, 71: 925–931.

    Article  Google Scholar 

  17. Power CJ (1987). Organogenesis from Helianthus annuus inbreds and hybrids from the cotyledons of zygotic embryos. American Journal of Botany. 74: 497–503.

    Article  CAS  Google Scholar 

  18. Bronner R, Jeannin G and Halme G (1994). Early cellular events during organogenesis and somatic embryogenesis induced on immature zygotic embryos of sunflower (Helianthus annuus). Canadian Journal of Botany, 72: 239–248.

    Article  Google Scholar 

  19. Charrière F and Hahne G (1998). Induction of embryogenesis versus caulogenesis on in vitro cultured sunflower (Helianthus annuus L.) immature zygotic embryos: role of plant growth regulators. Plant Science, 137: 63–71.

    Article  Google Scholar 

  20. Charrière F, Sotta B, Miginiac E and Hahne G (1999). Induction of adventitious shoots or somatic embryos on in vitro cultured zygotic embryos of Helianthus annuus: Variation of endogenous hormone levels. Plant Physiology & Biochemistry, 37: 751–757.

    Article  Google Scholar 

  21. Flores Berrios E, Gentzbittel L, Kayyal H, Alibert G and Sarrafi A (2000a). AFLP mapping of QTLs for in vitro organogenesis traits using recombinant inbred lines in sunflower (Helianthus annuus L.). Theoretical and Applied Genetics, 101: 1299–1306.

    Article  Google Scholar 

  22. Flores Berrios E, Sarrafi A, Fabre F, Alibert G and Getzbittel L (2000b). Genotypic variation and chromosomal location of QTLs for somatic embryogenesis revealed by epidermal layers culture of recombinant inbred lines in the sunflower (Helianthus annuus L.). Theoretical and Applied Genetics, 101: 1307–1312.

    Article  Google Scholar 

  23. Vear F, Gentzbittel L, Philippon J, Mouzeyar S, Mestries E, Roeckel-Drevet P, Tourvieille de Labrouhe D and Nicolas P (1997). The genetics of resistance to five races of downy mildew (Plasmopara halstedii) in sunflower (Helianthus annuus L.). Theoretical and Applied Genetics, 95: 584–589.

    Article  Google Scholar 

  24. Hewezi T, Jardinaud F, Alibert G and Kallerhoff J (2003). A new approach for efficient regeneration of a recalcitrant genotype of sunflower (Helianthus annuus L.) by organogenesis induction on split embryonic axes. Plant Cell, Tissue and Organ Culture. 73: 81–86.

    Article  CAS  Google Scholar 

  25. Everett NP, Robinson KEP and Mascarenhas D (1987). Genetic engineering of sunflower (Helianthus annuus L.). Bio/Technology, 5: 1201–1204.

    Article  CAS  Google Scholar 

  26. Müller A, Iser M and Hess D (2001). Stable transformation of sunflower (Helianthus annuus L.) using a non-meristematic regeneration protocol and green fluorescent protein as a vital marker. Transgenic Research, 10: 435–444.

    Article  PubMed  Google Scholar 

  27. Schrammeijer B, Sijmons PC, van den Elzen JM and Hoekema A (1990). Meristem transformation of sunflower via Agrobacterium. Plant Cell Reports. 9: 55–60.

    CAS  Google Scholar 

  28. Ulian EC, Smith RH, Gould JH and McKnight TD (1988). Transformation of plants via the shoot apex. In Vitro Cellular and Developmental Biology-Plant, 24: 951–954.

    Article  Google Scholar 

  29. Bidney D, Scelonge C, Martich J, Burrus M, Sims L and Huffman G (1992). Microprojectile bombardment of plant tissues increases transformation frequency by Agrobacterium tumefaciens. Plant Molecular Biology, 18: 301–313.

    Article  PubMed  CAS  Google Scholar 

  30. Knittel N, Gruber V, Hahne G and Lénée P (1994). Transformation of sunflower (Helianthuus annuus L): a reliable protocol. Plant Cell Reports. 14: 81–86.

    Article  CAS  Google Scholar 

  31. Malone-Schoneberg JB, Scelonge CJ, Burrus M and Bidney D (1994). Stable transformation of sunflower using Agrobacterium and split embryonic axis explants. Plant Science, 103: 199–207.

    Article  CAS  Google Scholar 

  32. Grayburn WS and Vick BA (1995). Transformation of sunflower (Helianthuus annuus L.) following wounding with glass beads. Plant Cell Reports, 14: 285–289.

    Article  CAS  Google Scholar 

  33. Burrus M, Molinier J, Himber C, Hunold R, Bronner R, Rousselin P and Halme G (1996). Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.) shoot apices: transformation patterns. Molecular Breeding, 2: 329–328.

    Article  CAS  Google Scholar 

  34. Alibert B, Lucas O, Le Gall V, Kallerhoff J and Alibert G (1999). Pectolytic enzyme treatment of sunflower explants prior to wounding and cocultivation with Agrobacterium tumefaciens, enhances efficiency of transient β-glucuronidase expression. Physiologia Plantarum, 106: 232–237.

    Article  CAS  Google Scholar 

  35. Rao KS and Rohini VK (1999). Agrobacterium-mediated transformation of sunflower (Helianthus annuus L): a simple protocol. Annals of Botany, 83: 347–354.

    Article  CAS  Google Scholar 

  36. Lucas O, Kallerhoff J and Alibert G (2000). Production of stable transgenic sunflowers (Helianthus annuus L.) from wounded immature embryos by particle bombardment and cocultivation with Agrobacterium tumefaciens. Molecular Breeding, 6: 479–487.

    Article  CAS  Google Scholar 

  37. Hewezi T, Perrault A, Alibert G and Kallerhoff J (2002). Dehydrating immature embryo split apices and rehydrating with Agrobacterium tumefaciens: A new method for genetically transforming recalcitrant sunflower. Plant Molecular Biology Reporter, 20: 335–345.

    Article  CAS  Google Scholar 

  38. Murashige T and Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15: 473–497.

    Article  CAS  Google Scholar 

  39. Gamborg OL, Miller RA, Ojima K (1968). Nutrient requirements of suspension culture of soybean root cells. Experimental Cell Research, 50 : 151–158.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kallerhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hewezi, T., Alibert, G., Kallerhoff, J. (2004). Genetic Transformation of Sunflower (Helianthus Annuus L.). In: Curtis, I.S. (eds) Transgenic Crops of the World. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2333-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2333-0_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-7021-3

  • Online ISBN: 978-1-4020-2333-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics