Agrobacterium-Mediated Transformation of Cabbage

Abstract

Cabbages are a widely grown and economically important vegetable that were domesticated during the first millennium B.C. They belong to the highly diversified Brassicaceae family comprising about 3000 species. In North America and Europe, B. oleracea white cabbage (B. oleracea var. capitata) is the predominant agronomic type; whereas in Asia, Chinese cabbage (Brassica rapa subsp. pekinensis) is the most commonly cultivated cabbage species. The FAO listed the world area of cabbages harvested at 3,016,059 hectares (ha) in 2002 with the largest planted area in China (1,469,684 ha) followed by India (280,000 ha), the Russian Federation (180,000 ha), USA (104,000 ha), Indonesia (100,000 ha), Korea(s) (89,531 ha), Japan (61,000 ha) and Columbia (48,000 ha), Kenya (39,051 ha) and Belarus (27,300 ha). The remaining 30% of world planting is spread over 125 additional countries (1).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    U, N (1935). Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japanese Journal of Botany 7: 389–452.Google Scholar
  3. 3.
    Song KM, Osborn TC and Williams PH (1988). Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 1. Genome evolution of diploid and amphidiploid species. Theoretical and Applied Genetics, 75: 784–794.CrossRefGoogle Scholar
  4. 4.
    Warwick SI and Black LD (1991). Molecular systematics of Brassica and allied genera (subtribe Brassicinae, tribe Brassiceae) chloroplast genome and cytodeme congruence. Theoretical and Applied Genetics, 82: 81–92.CrossRefGoogle Scholar
  5. 5.
    Earle ED, Metz TD, Roush RT, and Shelton AM (1996). Advances in transformation technology for vegetable Brassica. Acta Horticulturae, 407: 161–168.Google Scholar
  6. 6.
    Jun SI, Kwon SY, Paek KY, and Paek KH. (1995). Agrobacterium-mediated transformation and regeneration of fertile transgenic plants of Chinese cabbage (Brassica campestris ssp. pekinensis cv. ‘Spring Flavor). Plant Cell Reports, 14: 620–625.CrossRefGoogle Scholar
  7. 7.
    Bhattacharya RC, Viswakarma N, Bhat SR, Kirti PB and Chopra VL (2002). Development of insect-resistant transgenic cabbage plants expressing a synthetic cry1A(b) gene from Bacillus thuringiensis. Current Science, 83:146–150.Google Scholar
  8. 8.
    Wang H, Tsang E, McNeil J, Hannam C, Brown D and Miki B (2003). Expression of crylAc and GUS in cabbage and caulilfower. Acta Horticulturae, 625: 475–464.Google Scholar
  9. 9.
    Cho HS, Cao J, Ren JP and Earle ED (2001). Control of Lepidopteran insect pests in transgenic Chinese cabbage (Brassica rapa ssp. pekinensis) transformed with a synthetic Bacillus thuringiensis cry1C gene. Plant Cell Reports, 20: 1–7.CrossRefGoogle Scholar
  10. 10.
    Xiang Y, Wong WKR, Ma MC and Wong RSC (2000). Agrobacterium-mediated transformation of Brassica campestris ssp. Parachinensis with synthetic Bacillus thuringiensis cryl Ab and crylAc genes. Plant Cell Reports, 19: 251–256.CrossRefGoogle Scholar
  11. 11.
    Lee YH, Yoon LS, Suh SC and Kim HI (2001). Enhanced disease resistance in transgenic cabbage and tobacco expressing a glucose oxidase gene from Aspergillus niger. Plant Cell Reports, 20: 857–863.Google Scholar
  12. 12.
    Lee YH, Lee SB, Suh SC, Byun MO and Kim HI (2000). Herbicide-resistant cabbage (Brassica oleracea ssp. capita) plants by Agrobacterium-mediated transformation. Journal of Plant Biotechnology, 2: 35–41.Google Scholar
  13. 13.
    Cao MQ, Fan L, Lei Y, Bouchez, D, Tourneur C, Yan L and Robaglia C (2000). Transformation of Pakchoi (Brassica rapa L. ssp. chinensis) by Agrobacterium infiltration. Molecular Breeding, 6: 67–72.CrossRefGoogle Scholar
  14. 14.
    Bai YY, Mao HZ, Cao XL, Tang T, Wu D, Chen DD, Li WG and Fu WJ (1992). Transgenic cabbage plants with insect tolerance. In: You CB, Chen ZL (eds.), Biotechnology in Agriculture. Proceeding of the First Asia-Pacific Conference on Agriculture Biotechnology, Beijing, China, 20–24 Aug.1992, pp. 56–159.Google Scholar
  15. 15.
    Berthomieu P, Beclin C, Charlot F, Dore C and Jouanin L (1994). Routine transformation of rapid cycling cabbage (Brassica oleracea) - molecular evidence for regeneration of chimeras. Plant Science, 96: 223–235.CrossRefGoogle Scholar
  16. 16.
    Liu F, Yao L, Li Y and Cao MQ (1998). Transgenic plants with herbicide resistance obtained by using microspore-derived embryos of Chinese cabbage. Acta Agriculturae Boreali-Sinica, 13: 93–98.Google Scholar
  17. 17.
    Beclin C, Charlot F, Botton E, Jouanin L and Dore C (1993). Potential use of the aux2 gene from Agrobacterium rhizogenes as a conditional negative marker in transgenic cabbage. Transgenic Research, 2: 48–55.CrossRefGoogle Scholar
  18. 18.
    Cho HS, Lee YH, Suh SC, Kim DH and Kim HI (1994). Transformation of beta-glucuronidase (GUS) gene into Chinese cabbage (Brassica campestris var. pekinensis) by particle bombardment. RDA Journal of Agricultural Science, Biotechnology, 36: 181–186.Google Scholar
  19. 19.
    Christey MC, Sinclair BK, Braun RH and Wyke L (1997). Regeneration of transgenic vegetable brassicas (Brassica oleracea and B. campestris) via Ri-mediated transformation. Plant Cell Reports, 16: 587–593.CrossRefGoogle Scholar
  20. 20.
    He YK, Wang JY, Wei ZM, Xu ZH and Gong ZH (1995). Effects of whole Ri T-DNA and auxin genes alone on root induction and plant phenotype of Chinese cabbage. Acta Horticulturae, 402: 418–422.Google Scholar
  21. 21.
    Gartland JS (1995). Agrobacterium Virulence. In: Gartland KMA, Davey MR (eds.), Methods in Molecular Biology, Vol. 44, Agrobacterium Protocols. Humana Press Inc., Totowa, NJ, USA, pp. 15–28.Google Scholar
  22. 22.
    Berthomieu P and Jouanin L (1992). Transformation of rapid cycling cabbage (Brassica oleracea var. capitata) with Agrobacterium rhizogenes. Plant Cell Reports, 11:334–338.CrossRefGoogle Scholar
  23. 23.
    Cho YN, Park SY, Noh TK, Song MJ, Park YS and Min BW (2003). Transformation of Chinese cabbage with L-gulono-gamma-lactone oxidase (GLOase) — encoding gene using Agrobacterium tumefaciens. Korean Journal of Horticultural Science & Technology, 21: 9–13.Google Scholar
  24. 24.
    Cai L, Cui HZ and Zhang YJ (1999). Transgenic cabbage with a Bt gene resistant to insects. China Vegetables, 4: 31–32.Google Scholar
  25. 25.
    Cabrera JG, Padron RIV, Samsonov PD, Pardo AC, Menendez E, Lok MLC, Gonzalez PL, Arozarena NJ et al. (1998). Genetic transformation of cabbage (Brassica oleracea var. capitata) with Bacillus thuringiennsis cry 1 Ab and cry 1B genes. In: Crane JH (ed.), Proceedings of the International Society for Tropical Horticulture, Vol. 42, pp. 367 – 373.Google Scholar
  26. 26.
    Eisner GI, Mar‘yakhina IY and Shemyakin MF (1992). Optimization of conditions for in vitro plant regeneration for cabbage transformation. Soviet Agricultural Sciences, 11/12: 15–19.Google Scholar
  27. 27.
    Fang HJ, Li DL, Wang GL and Li YH (1997). An insect-resistant transgenic cabbage plant with the cowpea trypsin inhibitor (CpTi) gene. Acta Botanica Sinica, 39: 940–945.Google Scholar
  28. 28.
    Cai XN, She JM, Zhu Z, Zhu WM, Yuan XH and Su XJ (1997). Establishment of an Agrobacterium-mediated genetic transformation system for common Chinese cabbage (Brassica chinensis). Jiangsu Journal of Agricultural Sciences, 13: 110–114.Google Scholar
  29. 29.
    Pius PK and Achar PN (2000). Agrobacterium-mediated transformation and plant regeneration of Brassica oleracea var. capitata. Plant Cell Reports, 19: 888–892.CrossRefGoogle Scholar
  30. 30.
    Sawant S, Singh PK, Madanala R and Tuli R (2001). Designing of an artificial expression cassette for the high-level expression of transgenes in plants. Theoretical and Applied Genetics, 102: 635–644.CrossRefGoogle Scholar
  31. 31.
    She JM, Cai XN, Zhu WM, Zhang CX, Ding WX, Li JB, Li B and Zhu Z (2001). Resistant characteristics of insect-resistant transgenic plants and progenies of cabbage (Brassica oleracea L. var. capitata). Jiangsu Journal of Agricultural Sciences, 17: 73–76.Google Scholar
  32. 32.
    She JM, Cai XN, Zhu Zh, Xu HL, Zhu WM, Wu JY, Wang AM and Ding WX (1996). Studies on plant regeneration and conditions for gene transformation of cabbage (Brassica oleracea L. var. capitata). Jiangsu Journal of Agricultural Sciences, 12: 6–9.Google Scholar
  33. 33.
    Lim HT, You YS, Park EJ, Song YN and Park HK (1998). High plant regeneration, genetic stability of regenerants, and genetic transformation of herbicide resistance gene (bar) in Chinese cabbage (Brassica campestris ssp. pekinensis). Acta Horticulturae, 459: 199–208.Google Scholar
  34. 34.
    Hellens R, Mullineaux P and Klee H (2002). A guide to Agrobacterium binary vectors. Trends in Plant Science, 10: 446–451.Google Scholar
  35. 35.
    Zhang FL, Takahata Y, Watanabe M and Xu JB (2000). Agrobacterium-mediated transformation of cotyledonary explants of Chinese cabbage (Brassica campestris L. ssp. pekinensis). Plant Cell Reports, 19: 569–575.CrossRefGoogle Scholar
  36. 36.
    Kuginuki Y and Tsukazaki H (2001). Regeneration ability and Agrobacterium-mediated transformation of different cultivars in Brassica oleracea L. and B. rapa L. (syn. B. campestris L.). Journal of the Japanese Society for Horticultural Science, 70: 682–690.CrossRefGoogle Scholar
  37. 37.
    Gamborg OL, Miller RA and Ojima K (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 50: 151–158.PubMedCrossRefGoogle Scholar
  38. 38.
    Murashige T and Skoog F (1962). A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiologia Plantarum, 15: 473–497.CrossRefGoogle Scholar
  39. 39.
    Jin RG, Liu YB, Tabashnik BE and Borthakur D (2000). Development of transgenic cabbage (Brassica oleracea var. capitata) for insect resistance by Agrobacterium tumefaciens-mediated transformation. In Vitro Cellular and Developmental Biology-Plant, 36: 231–237.CrossRefGoogle Scholar
  40. 40.
    Cogan N, Harvey E, Robinson H, Lynn J, Pink D, Newbury HJ and Puddephat I (2001). The effects of anther culture and plant genetic background on Agrobacterium rhizogenes-mediated transformation of commercial cultivars and derived doubled-haploid Brassica oleracea. Plant Cell Reports, 20: 755–762.CrossRefGoogle Scholar
  41. 41.
    Foster E, Hattori J, Labbe H, Ouellet T, Fobert P, James L, Iyer V and Miki B (1999). A tobacco cryptic constitutive promoter, tCUP, revealed by T-DNA tagging. Plant Molecular Biology, 41: 45–55.PubMedCrossRefGoogle Scholar
  42. 42.
    Wu K, Malik K, Tian L, Hu M, Martin T, Foster E, Brown D and Miki B (2001). Enhancer and core promoter elements are essential for the activity of a cryptic gene activation sequence from tobacco, tCUP. Molecular and General Genomics, 265: 763–770.CrossRefGoogle Scholar
  43. 43.
    Malik K, Wu K, Li X, Martin-Heller T, Hu M, Foster E, Tian L, Wang C et al. (2002). A constitutive gene expression system derived front the tCUP cryptic promoter elements. Theoretical and Applied Genetics, 105: 505–514.PubMedCrossRefGoogle Scholar
  44. 44.
    Puddephat IJ, Riggs TJ and Fenning TM (1996). Transformation of Brassica oleracea L.: a critical review. Molecular Breeding, 2: 185–210.CrossRefGoogle Scholar
  45. 45.
    Tsukazaki H, Kuginuki Y, Aida R and Suzuki T (2002). Agrobacterium-mediated transformation of a doubled haploid line of cabbage. Plant Cell Reports, 21: 257–262.CrossRefGoogle Scholar
  46. 46.
    Wang F, Li HX, Ye ZB and Lu Y (2002). Genetic transformation of Brassica campestris L. ssp. pekinensis via Agrobacterium with a Bt gene. Hunan Agricultural Science & Technology Newsletter, 3: 10–14.Google Scholar
  47. 47.
    Cheng XH, Zhou XY, Liu F and Yao L (2001). Transformation of Chinese cabbage (B. campestris L. subsp. pekinensis) using Agrobacterium. Journal of Hunan Agricultural University, 27: 463–466.Google Scholar
  48. 48.
    Gonzalez Cabrera J, Vazquez Padron RI, Prieto Samsonov D, Ayra Pardo C, Menendez E, Lok MLC, Gonzalez PL, Arozarena NJ et al. (1998). Genetic transformation of cabbage (Brassica oleraceae var. capitata) with Bacillus thuringiensis crylAb and cry1B genes. Proceedings of the Interamerican Society for Tropical Horticulture, 42: 367–373.Google Scholar
  49. 49.
    He YK, Gong ZH, Wang F and Wang M (1991). Transformation efficiency of Brassica crops with Agrobacterium rhizogenes harboring the binary vector Bin19. Chinese Journal of Biotechnology, 7: 382–385.Google Scholar
  50. 50.
    Iqbal A, Qazi SHA, Hasnain S, Ahmad M and Shakoori AR (1996). Optimization of conditions for T-DNA transfer in callus culture of Brassica oleracea. Proceedings of Pakistan Congress of Zoology, 16: 143–153.Google Scholar
  51. 51.
    Kang BK and Park YD (2001). Effect of antibiotics and herbicide on shoot regeneration from cotyledon and hypocotyl explants of Chinese cabbage. Korean Journal of Horticultural Science & Technology, 19: 17–21.Google Scholar
  52. 52.
    Kim BK, Cho YN, Noh TK, Park YS, Harn CH, Yang SG and Min BW (2003). Agrobacteriummediated transformation of Chinese cabbage with a synthetic protein disulfide isomerase gene. Journal of the Korean Society for Horticultural Science, 44: 5–9.Google Scholar
  53. 53.
    Kim DH, Cho HS, Lee YH, Suh SC and Kim HI (1995). Plantlet regeneration of hygromycin resistant Chinese cabbage (Brassica campestris ssp. pekinensis) from callus induced from Agrobacterium infected hypocotyls. RDA Journal of Agricultural Science, Biotechnology, 37: 161–166.Google Scholar
  54. 54.
    Metz TD, Dixit R and Earle ED (1995). Agrobacterium tumefaciens-mediated transformation of broccoli (Brassica oleracea var. italica) and cabbage (B. oleracea var. capitata). Plant Cell Reports, 15: 287–292.CrossRefGoogle Scholar
  55. 55.
    Paul KA, Kumar PA and Saradhi PP (2002). Genetic transformation of vegetable Brassicas: a review. Plant Cell Biotechnology and Molecular Biology, 3: 1–10.Google Scholar
  56. 56.
    Radchuk VV, Blume YAB, Ryschka U, Schumann G and Klocke E (2000). Regeneration and transformation of some cultivars of headed cabbage. Russian Journal of Plant Physiology, 47: 400–406.Google Scholar
  57. 57.
    Sretenovic-Rajcic T, Mijatovic M, Stevanovic D and Vinterhalter D (2002). In vitro culture as a tool for improvement of cabbage cultivars in Yugoslavia. Acta Horticulturae, 579: 209–213.Google Scholar
  58. 58.
    Wei ZM, Huang JQ, Xu SP and Xue HW (1998). High efficiency regeneration and Agrobacterium-mediated transformation of hypocotyls in Brassica oleracea var. capitata with a B.t. gene. Acta Agriculturae Shanghai, 14: 11–8.Google Scholar
  59. 59.
    Yu PT, Wang W, He YK and Shen RJ (2000). Transformation of Barnase gene in Chinese cabbage. Acta Agriculturae Shanghai, 16: 17–19.Google Scholar
  60. 60.
    Zhu CX, Song YZ, Zhang S, Guo XQ and Wen FJ (2001). Production of transgenic Chinese cabbage by transformation with the CP gene of turnip mosaic virus. Acta Phytopathologica Sinica, 31: 257–264.Google Scholar
  61. 61.
    Ryschka U, Klocke E, Schumann G and Warwick S (2003). High frequency recovery of intergeneric fusion products of Brassica oleracea (+) Lepidium meyenii and their molecular characterization by RAPD and AFLP. Acta Horticulturae, 625: 145–151.Google Scholar
  62. 62.
    Motegi T, Noi I, Zhou J, Kanno A, Kameya T and Hirata Y (2003). Obtaining an ogura-type CMS line from asymmetrical protoplast fusion between cabbage (fertile) and radish (fertile). Euphytica, 129: 319–323.CrossRefGoogle Scholar
  63. 63.
    Hou X, Cao S, She J and Lu W (2001). Synthesis of cytoplasm hybrid of non-heading Chinese cabbage through asymmetrical electric fusion of protoplast cell. Acta Horticulturae Sinica, 28: 532–537.Google Scholar
  64. 64.
    Liao FS, Do YY, Lee GC and Huang PL (1998). Studies on the application of pollen tube gene transfer method to black rot-resistant cabbage breeding. Journal of the Chinese Society for Horticultural Science, 44: 55–63.Google Scholar
  65. 65.
    Xu HQ, Cai GP, Hu Y, Zhao NM, Tang HX and Jia SR (1991). Transferring genes into protoplasts of Chinese cabbage and cucumber by electroporation. Acta Botanica Sinica, 33: 7–13.Google Scholar
  66. 66.
    Zhang FL, Takahata Y and Xu JB (1998). Medium and genotype factors influencing shoot regeneration from cotyledonary explants of Chinese cabbage (Brassica campestris L. ssp. vekinensis). Plant Cell Reports, 17: 780–786.CrossRefGoogle Scholar
  67. 67.
    Koncz C and Schell J (1986). The promoter of TL-DNA gene 5 controls the tissue specific expression of chimeric genes carried by a novel type of Agrobacterium vector. Molecular and General Genetics, 204: 383–396.CrossRefGoogle Scholar
  68. 68.
  69. 69.
    Yang GD, Zhu Z, Li Y, Zhu ZJ, Xiao GF and Wei XL (2002). Obtaining transgenic plants of Chinese cabbage resistant to Pieris rapae L. with modified CpTI gene (sck). Acta Horticulturae Sinica. 29: 224–228Google Scholar
  70. 70.
    Zhang ZQ, Zhou Y, Zhong WJ, Zhang JJ, Yin LQ, Chen QQ, Gong ZZ, Xie WJ et al. (1999). Introduction of an arrowhead proteinase inhibitor gene in Brassica campestris ssp. chinensis L. and expression in transgenic plants. Acta Agriculturae Shanghai, 15: 4–9.Google Scholar
  71. 71.
    Sato T (2000). Studies on breeding methodology using isolated microspores culture and genetic transformation in cruciferous vegetables. Bulletin of the National Research Institute of Vegetables, Ornamental Plants and Tea, 15: 209–283.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Southern Crop Protection and Food Research CentreAgriculture and Agri-Food CanadaLondonCanada

Personalised recommendations