Skip to main content

Production of Transgenic Cassava (Manihot Esculenta Crantz)

  • Chapter
Transgenic Crops of the World

Abstract

Cassava (Manihot esculenta Crantz, Euphorbiaceae, 2n = 36) is a perennial root crop in the tropics. Its starchy storage roots provide a source of staple food and livelihood for over 600 million people worldwide. Cassava grows in large tropical and subtropical regions of Africa, Asia and Latin America. An average of 10 tonnes per hectare of cassava roots can be produced in a 12 month growing season. The annual world production of cassava in 2002 was 180 million metric tonnes from 16.9 million hectares. Of the total production, Africa, Asia and Latin America account for 54%, 28% and 18% respectively (1). In sub-Saharan Africa, cassava provides up to 60% of the daily calorie intake with more than 80% of the harvest used as food (2, 3). In certain regions, the leaves, which contain appreciable quantities of protein and vitamins, are also consumed as a major component of the diet to provide supplementary protein, vitamins and minerals. Cassava is a key component of food security in developing countries and especially in Africa, where the food insecurity is the most severe in the world (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. FAO (2002). FAO production Yearbook. FAOSTAT database. httn://anns.fao.org/flefallt htm

    Google Scholar 

  2. Cock JH (1985). Cassava: new potential for a ne2lected crop. Westview. London. UK.

    Google Scholar 

  3. Nweke FI, Spencer DSC and Lynam JK (2002). The cassava transformation: Africa’s bestkept secret, Michigan State University Press East Lansing, USA.

    Google Scholar 

  4. FAO (2000). Cassava can play a key role in reducing hunger and poverty. FAO press release 00/25. http://www.fao.org/waicent/ois/press_ne/presseng/2000/pren0025.htm.

  5. Belloti AC, Smith L and Lapointe SL (1999). Recent advances in cassava pest management. Annual Review of Entomology, 44: 343–370.

    Article  Google Scholar 

  6. Thresh JM, Fargette D and Otim-Nape GW (1994). Effects of African cassava mosaic geminivirus on the yield of cassava. Tropical Science, 34: 26–42.

    Google Scholar 

  7. Thresh JM (2000). Improving cassava-based systems. Annual Report, Project 6.

    Google Scholar 

  8. Konan NK, Sangwan RS and Sangwan-Norreel BS (1994). Somatic embryogenesis from cultured mature cotyledons of cassava (Manihot esculenta Crantz). Plant Cell, Tissue and Organ Culture, 37: 91–102.

    Article  Google Scholar 

  9. Stamp JA and Henshaw GG (1987). Somatic embryogenesis from clonal leaf tissue of cassava. Annals of Botany, 59: 445–450.

    CAS  Google Scholar 

  10. Szabados L, Hoyos R and Roca W (1987). In vitro somatic embryogenesis and plant regeneration of cassava. Plant Cell Reports, 6: 248–251.

    Article  CAS  Google Scholar 

  11. Raemakers CJJM, Bessembinder J, Staritsky G, Jacobsen E and Visser RGF (1993). Inducion, germination and shoot development of somatic embryos in cassava. Plant Cell, Tissue and Organ Culture, 33: 151–156.

    Article  Google Scholar 

  12. Mathews H, Schopke C, Carcamo R, Chavarroaga P, Fauquet C and Beachy RN (1993). Improvement of somatic embryogenesis and plant recovery in cassava. Plant Cell Reports, 12: 328–333.

    Article  Google Scholar 

  13. Li HQ, Huang YW, Liang CY and Guo Y (1995). Improvement of plant regeneration from cyclic somatic embryos in cassava. In: Cassava Biotechnology Network (ed.) Proceedings of the 2nd International Scientific Meeting, Bogor, Indonesia, CIAT Working Document 150. pp. 289–302.

    Google Scholar 

  14. Puonti-Kaerlas J, Frey P and Potrykus I (1997). Development of meristem gene transfer techniques for cassava. African Journal of Root Tuber Crops, 2: 175–180.

    Google Scholar 

  15. Mukherjee A (1995). Embryogenesis and regeneration from cassava calli of anther and leaf. In: Cassava Biotechnoglogy Network (ed.) Proceedings of the 2nd International Scientific Meeting, Bogor, Indonesia, CIAT Working Document 150. pp. 375–381.

    Google Scholar 

  16. Woodward B and Puonti-Kaerlas J (2001). Somatic embryogenesis from floral tissue of cassava (Manihot esculenta Crantz). Euphytica, 120: 1–6.

    Article  Google Scholar 

  17. Murashige T and Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15: 473–497.

    Article  CAS  Google Scholar 

  18. Li HQ, Huang YW, Liang CY, Guo JY, Liu HX, Potrykus I and Puonti-Kaerlas J (1998). Regeneration of cassava plants via shoot organogenesis. Plant Cell Reports, 17: 410 – 414.

    Article  CAS  Google Scholar 

  19. Zhu J, Huang YW and Liang CY (1998). Improvement of plant regeneration from cyclic secondary somatic embryos in cassava (Manihot esculenta Crantz). Journal of Tropical and Subtropical Botany, 6: 144–151.

    CAS  Google Scholar 

  20. Gresshoff P and Doy C (1974). Derivation of a haploid cell line from Vitis vinifera and the importance of the stage of meiotic development of the anthers for haploid culture of this and other genera. Zeitschrift für Pflanzenphysiologie, 73, 132–141.

    Article  Google Scholar 

  21. Taylor NJ, Edwards M, Kiernan RJ, Davey CDM, Blakesley D and Henshaw GG (1996). Development of friable embryogenic callus and embryogenic suspension culture systems in cassava (Manihot esculenta Crantz). Nature Biotechnology, 14: 726–730.

    Article  PubMed  CAS  Google Scholar 

  22. Taylor NJ, Kiernan RJ, Henshaw GG and Blakesley D (1997). Improved procedures for producing embryogenic tissues of African cassava cultivars: Implications for genetic transformation. African Journal of Root Tuber Crops, 2: 200–204.

    Google Scholar 

  23. Schenk RU and Hildebrandt AC (1972). Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Canada Journal of Botany, 50: 199–204.

    Article  CAS  Google Scholar 

  24. Raemakers CJJM, Sofiari E, Taylor N, Henshaw G, Jacobsen E and Visser RGF (1996). Production of transgenic cassava (Manihot esculenta Crantz) plants by particle bombardment using luciferase activity as selection marker. Molecular Breeding, 2: 339–349.

    Article  CAS  Google Scholar 

  25. Sofiari E, Raemakers CJJM, Bergervoet JEM, Jacobsen E and Visser RGF (1998). Plant regeneration from protoplasts isolated from friable embryogenic callus of cassava. Plant Cell Reports, 18: 159–165.

    Article  CAS  Google Scholar 

  26. Li HQ, Sautter C, Potrykus I and Puonti-Kaerlas J (1996). Genetic Transformation of Cassava (Manihot esculenta Crantz). Nature Biotechnology, 14: 736–740.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang P, Phansiri S and Puonti-Kaerlas J (2001). Improvement of cassava shoot organogenesis by the use of silver nitrate in vitro. Plant Cell, Tissue and Organ Culture, 67: 47–54.

    Article  CAS  Google Scholar 

  28. Hankoua BB (2003). Regeneration and transformation of African cassava (Manihot esculenta Crantz) germplasm. Ph.D. Thesis, University of Ibadan, Ibadan, Nigeria.

    Google Scholar 

  29. Schöpke C, Taylor N, Carcamo R, Konan NK, Marmey P, Henshaw GG, Beachy RN and Fauquet C (1996). Regeneration of transgenic cassava plants (Manihot esculenta Crantz) from microbombarded embryogenic suspension cultures. Nature Biotechnology, 14: 731–735.

    Article  PubMed  Google Scholar 

  30. Snepvangers SCHJ, Raemakers CJJM, Jacobsen E and Visser RGF (1997). Optimization of chemical selection of transgenic friable embryogenic callus of cassava using the luciferase report gene system. African Journal of Root Tuber Crops, 2: 196–200.

    Google Scholar 

  31. Gonzalez AE, Schöpke C, Taylor NJ, Beachy RN and Fauquet CM (1998). Regeneration of transgenic cassava plants (Manihot esculenta Crantz) through Agrobacterium-mediated transformation of embryogenic suspension cultures. Plant Cell Reports, 17: 827–831.

    Article  CAS  Google Scholar 

  32. Munyikwa TRI, Reamakers CCJM, Schreuder M, Kok R, Schippers M, Jacobsen E and Visser RGF (1998). Pinpointing towards improved transformation and regeneration of cassava (Manihot esculenta Crantz). Plant Science, 135: 87–101.

    Article  CAS  Google Scholar 

  33. Sarria R, Torres E, Angel F, Chavarriaga P and Roca WM (2000). Transgenic plants of cassava (Manihot esculenta) with resistance to Basta obtained by Agro bacterium-mediated transformation. Plant Cell Reports, 19: 339–344.

    Article  CAS  Google Scholar 

  34. Zhang P, Legris G, Coulin P and Puonti-Kaerlas J (2000). Production of stably transformed cassava plants via particle bombardment. Plant Cell Reports, 19: 939–945.

    Article  CAS  Google Scholar 

  35. Zhang P, Potrykus I and Puonti-Kaerlas J (2000). Efficient production of transgenic cassava using negative and positive selection. Transgenic Research, 9: 405–415.

    Article  PubMed  CAS  Google Scholar 

  36. Zhang P and Puonti-Kaerlas J (2000). PIG-mediated cassava transformation using positive and negative selection. Plant Cell Reports, 19: 1041–1048.

    Article  CAS  Google Scholar 

  37. Zhang P, Jaynes JM, Potrykus I, Gruissem W and Puonti-Kaerlas J (2003b). Transfer and expression of an artificial storage protein (ASP 1) gene in cassava (Manihot esculenta Crantz). Transgenic Research, 12: 243–250.

    Article  PubMed  CAS  Google Scholar 

  38. Stanley J (1983). Infectivity of cloned geminivirus genome requires sequences from both DNAs. Nature, 305: 643–645.

    Article  CAS  Google Scholar 

  39. Stanley J, Frischmuth T and Ellwood S (1990). Defective viral DNA ameliorates symptoms of geminivirus infection in transgenic plants. Proceedings of the National Academy of Sciences USA, 87: 6291–6295.

    Article  CAS  Google Scholar 

  40. Hong Y and Stanley J (1996). Virus resistance in Nicotiana benthamiana conferred by African cassava mosaic virus replication-associated protein (AC1) transgene. Molecular PlantMicrobe Interactions, 9: 219–225

    Article  CAS  Google Scholar 

  41. Von Arnim A and Stanley J (1992). Inhibition of African cassava mosaic virus systemic infection by a movement protein from the related geminivirus tomato golden mosaic virus. Virology, 187: 555–564.

    Article  Google Scholar 

  42. Duan YP, Powell C, Webb S, Purcifull D and Hiebert E (1997). Geminivirus resistance in transgenic tobacco expressing mutated BC1 protein. Molecular Plant-Microbe Interactions, 10: 617–623.

    Article  CAS  Google Scholar 

  43. Sangaré A, Deng D, Fauquet CM and Beachy RN (1999). Resistance to African cassava mosaic virus conferred by a mutant of the putative NTP-binding domain of the Rep gene (AC1) in Nicotiana benthanmiana. Molecular Breeding, 5: 95–102.

    Article  Google Scholar 

  44. Hong Y, Saunders K, Hartley M and Stanley J (1996). Resistance to geminivirus infection by virus-induced expression of dianthin in transgenic plants. Virology, 220: 119–127.

    Article  PubMed  CAS  Google Scholar 

  45. Blechl AE and Anderson OD (1996). Expression of a novel high-molecular-weight glutenin subunit gene in transgenic wheat. Nature Biotechnology, 14: 875–879.

    Article  PubMed  CAS  Google Scholar 

  46. Bagga S, Adams H, Rodriquez JD, Kemp JD and Sengupta-Gopalan C (1997). Co-expression of the maize δ- and fβ-zein genes results in stable accumulation of δ-zein in ER-derived protein bodies formed by ββ-zein. The Plant Cell, 9: 1683–1686.

    PubMed  CAS  Google Scholar 

  47. Gan SS and Amasino RM (1995). Inhibition of leaf senescence by autoregulated production of cytokinin. Science, 270: 1986–1988.

    Article  PubMed  CAS  Google Scholar 

  48. Hoekema A, Hirsch PR, Hooykaas PJJ and Schilperoort RA (1983). A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Tiplasmid. Nature, 303: 179–180.

    Article  CAS  Google Scholar 

  49. Jefferson RA (1987). Assaying chimeric genes in plants: the GUS gene fusion system. Plant Molecular Biology Reporter, 5: 387–405.

    Article  CAS  Google Scholar 

  50. Ferguson JD, Street HE and David SB (1958). The carbohydrate nutrition of tomato roots. IV. The inhibition of excised root growth by galactose and mannose and its reversal by dextrose and xylose. Annals of Botany, 22: 525–538.

    CAS  Google Scholar 

  51. Malca I, Endo RM and Long MR (1967). Mechanism of glucose counteraction of inhibition of root elongation by galactose, mannose, and glucosamine. Phyopathology, 57: 272–278.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Acadenmic Publishers

About this chapter

Cite this chapter

Zhang, P., Gruissem, W. (2004). Production of Transgenic Cassava (Manihot Esculenta Crantz). In: Curtis, I.S. (eds) Transgenic Crops of the World. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2333-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2333-0_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-7021-3

  • Online ISBN: 978-1-4020-2333-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics