Agrobacterium-Mediated Transformation of Grape Embryogenic Calli

  • A. Perl
  • V. Colova-Tsolova
  • Y. Eshdat


The use of breeding and genetics to boost crop productivity and quality, and the use of agricultural chemicals to protect crops and enhance plant growth, has been the two prominent features of agriculture in the 20th Century (1). The integration of chemicals and plant breeding resulted in food sufficiency and variety, helping to meet the needs of an ever-increasing population (2).


Somatic Embryo Somatic Embryogenesis Vitis Vinifera Grape Cultivar Embryogenic Cell Suspension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dandekar AM and Gutterson N (2000). Genetic engineering to improve quality, productivity, and value of Crops, California Agriculture, 54: 49–56.CrossRefGoogle Scholar
  2. 2.
    Chrispeels MJ and Sadava DE (1994). Human population growth: Lessons from demography. In: Jones G, Barlett TL (eds.), Plants, Genes and Agriculture (pp.13–24). Boston, MA: Jones and Bartlett Publishers.Google Scholar
  3. 3.
    Martin GB (1998). Gene discovery for crop improvement. Current Opinion in Biotechnology, 9: 220–226.PubMedCrossRefGoogle Scholar
  4. 4.
    Winkler AJ, Cook JA, Kliewer WM and Lider LA (1974). Development and composition of grapes. In: General Viticulture (pp. 151–157). Berkeley, Los Angeles, London: University of California Press.Google Scholar
  5. 5.
    Martinelli L and Garibaudo I (2001). Somatic embryogenesis in grapevine (Vitis spp.). In: Roubelakis-Angelakis KA (ed.), Molecular Biology and Biotechnology of Grapevine (pp. 327352). The Netherlands: Kluwer Academic Publishers.Google Scholar
  6. 6.
    Martinelli L and Mandolino G (2001). Transgenic transformation in Vitis. In: Bajaj YPS (ed.), Biotechnology in Agriculture and Forestry, Transgenic Crops II, (Vol. 47, pp. 325–338). Berlin: Germany, Springer-Verlag.Google Scholar
  7. 7.
    Jayasankar S, Gray DJ and Litz RE (1999). High-efficiency somatic embryogenesis and plant regeneration from suspension cultures of grapevine. Plant Cell Reports, 18: 533–537.CrossRefGoogle Scholar
  8. 8.
    Jayasankar S, Van Aman M, Li Z and Gray DJ (2001). Direct seedling of grapevine somatic embryos and regeneration of plants. In Vitro Cellular and Developmental Biology-Plant, 37: 476–479.CrossRefGoogle Scholar
  9. 9.
    Motoike SY, Skirvin RM, Norton MA and Otterbacher AG (2001). Somatic embryogenesis and long term maintenance of embryogenic lines from fox grapes. Plant Cell, Tissue and Organ Culture, 66: 121–131.CrossRefGoogle Scholar
  10. 10.
    Martinelli L, Candioli E, Costa D, Poletti V and Rascio N (2001a). Morphogenic competence of Vitis rupestris secondary somatic embryos with a long culture history. Plant Cell Reports, 20: 279–284.CrossRefGoogle Scholar
  11. 11.
    Martinelli L, Garibaudo I, Bertoldi D, Candioli E and Poletti V (2001b). High efficiency embryogenesis and plant germination in grapevine cultivars Chardonnay and Brachetto a grappolo lungo. Vitis, 40: 111–115.Google Scholar
  12. 12.
    Das DK, Reddy MK, Upadhyaya KC and Sopory SK (2002). An efficient leaf-disc culture method for the regeneration via somatic embryogenesis and transformation of grape (Vitis vinifera L.). Plant Cell Reports, 20: 999–1005.CrossRefGoogle Scholar
  13. 13.
    Zlenko VA, Kotikov IK and Troshin LP (2002). Efficient GA3-assisted plant regeneration from cell suspensions of three grape genotypes via somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 70: 295–299.CrossRefGoogle Scholar
  14. 14.
    Salunkhe CK, Rao PS and Mhatre M (1997). Induction of somatic embryogenesis and plantlets in tendrils of Vitis ninifera L.. Plant Cell Reports, 17: 65–67.CrossRefGoogle Scholar
  15. 15.
    Zhu YM, Hoshino Y, Nakano M, Takahashi E and Mii M (1997). Highly efficient system of plant regeneration from protoplasts of grapevine (Vitis vinifera L.) through somatic embryogenesis by using embryogenic callus cultures and activated charcoal. Plant Science, 123: 151–157.CrossRefGoogle Scholar
  16. 16.
    Torregrosa L, Locco P and Thomas MR (2002b). Influence of Agrobacterium strain, culture medium, and cultivar on the transformation efficiency of Vitis vinifera L.. American Journal of Enology and Viticulture, 53: 183–190.Google Scholar
  17. 17.
    Perrin M, Martin D, Joly D, Demangeat G, This P and Masson JE (2001). Medium-dependent response of grapevine somatic embryogenic cells. Plant Science, 161: 107–116.CrossRefGoogle Scholar
  18. 18.
    Takeno K, Koshioka M, Pharis RP, Rajasekaran K and Mullins MG (1983). Endogenous gibberellin-like substances in somatic embryos of grape (Vitis vinifera x Vitis rupestris) in relation to embryogenesis and the chilling requirement for subsequent development of mature embryos. Plant Physiology, 73: 803–808.PubMedCrossRefGoogle Scholar
  19. 19.
    Maitz M (2000). Use of an ultrasound cell retension system for the size fractionation of somatic embryos of woody species. Plant Cell Reports, 19: 1057–1063.CrossRefGoogle Scholar
  20. 20.
    Jayasankar S and Bondada BR (2002). A unique morphotype of grapevine somatic embryogenesis exhibits accelerated germination and early plant development. Plant Cell Reports, 20: 907–911.CrossRefGoogle Scholar
  21. 21.
    Wang Q, Gafny R, Sahar N, Mawassi M, Tanne E and Perl A (2002). Cryopreservation of grapevine (Vitis vinifera L.) embryogenic cell suspensions and subsequent plant regeneration by encapsulation-dehydration. Plant Science, 162: 551–558.CrossRefGoogle Scholar
  22. 22.
    Wang Q, Mawassi M, Sahar N, Li P, Colova-Tsolova V, Gafny R, Sela I, Tanne E et al. (2003). Cryopreservation of grapevine (Vitis spp.) embryogenic cell suspensions by encapsulationvitrification. Plant Cell, Tissue and Organ Culture, (in press).Google Scholar
  23. 23.
    Perl A and Eshdat Y (1998). DNA transfer and gene expression in transgenic grapes. In: Tombs MP (ed.), Biotechnology & Genetic Engineering Reviews (Vol. 15, pp. 365–386). Andover, England: Intercept Ltd.Google Scholar
  24. 24.
    Semenzato M, Poletti V and Martinelli L (2002). The use of phosphomannose isomerase as a selectable marker to transfer foreign genes in grape (Vitis spp.), Proceedings of the XL VI Italian Society of Agricultural Genetics — SIGA Annual Congress, Giardini Naxos, Italy, 18–21 September. 25. Locco P, Franks T and Thomas MR (2001). Genetic transformation of major wine grape cultivars of Vitis vinifera L.. Transgenic Research, 10: 105–112.Google Scholar
  25. 26.
    Rubtsova MA and Levenko BA (1999). Transgenic grapevine plants resistant to the herbicide phosphinothricin and to the crown gall disease. Fiziologia I Biokhimia Kul’turykh Rastenii, 31: 214–219.Google Scholar
  26. 27.
    Jayasankar S (2000). In vitro selection of Vitis vinifera Chardonay with Elsinoe ampelina culture filtrate is accompanied by fungal resistance and enhanced secretion of chitinase. Planta, 211: 200–208.PubMedCrossRefGoogle Scholar
  27. 28.
    Borhoff BA and Harst M (2000). Establishment of embryo suspension of grapevines (Vitis L.). Vitis, 39: 27–29.Google Scholar
  28. 29.
    Motioike SY, Skirvin RM, Norton MA and Otterbacher AG (2002). Development of methods to genetically transform American grape (Vitis labrusca L.H. Bailey). Journal of Horticultural Science & Biotechnology, 77: 691–696.Google Scholar
  29. 30.
    Mozsar L, Viczian O and Suie S (1998). Agrobacterium-mediated genetic transformation of a interspecific grapevine. Vitis, 37: 127–130.Google Scholar
  30. 31.
    Yamamoto T, Iketani H, Leki H, Nishizawa Y, Hibi T, Hayashi T and Matsuta N (2000). Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Reports, 19: 639–646.CrossRefGoogle Scholar
  31. 32.
    Nakano M, Watanabe Y and Hoshino Y (2000). Histological examination of callogenesis and adventitious embryogenesis in immature ovary culture of grapevine (Vitis vinifera L.). Journal of Horticultural Science & Biotechnology, 75: 154–160.Google Scholar
  32. 33.
    Gutoranov GP, Tsvetkov IJ, Colova-Tsolova VM and Atanassov AI (2001). Genetically engineered grapevines carrying GFLV coat protein and antifreeze genes. Agriculturae Conspectus Scientificus, 66: 69–74.Google Scholar
  33. 34.
    Buck S (1999). Genetic transformation studies on Vitis vinifera cv. Seyval blanc. Doctoral dissertation, University of Hohenheim, Stuttgart, Germany.Google Scholar
  34. 35.
    Salunkhe CK, Rao PS and Mhatre M (1999). Plantlet regeneration via somatic embryogenesis in anther callus of Vitis latifolia L.. Plant Cell Reports, 18: 670–673.CrossRefGoogle Scholar
  35. 36.
    Li Z, Jayasankar S and Gray DJ (2001a). Expression of a bifunctional green fluorescent protein (GFP) fusion marker under the control of three constitutive promoters and enhanced derivatives in transgenic grape (Vitis vinifera). Plant Science, 160: 877–887.PubMedCrossRefGoogle Scholar
  36. 37.
    Franks T, Gang HD and Thomas M (1998). Regeneration of transgenic shape Vitis vinifera L. Sultana plants: genotypic and phenotypic analysis. Molecular Breeding, 4: 321–333.CrossRefGoogle Scholar
  37. 38.
    Kikkert JR (2001). Grapevine genetic engineering. In: Roubelakis-Angelakis KA (ed.), Molecular Biology and Biotechnology of the Grapevine (pp. 393–463). The Netherlands: Kluwer Academic Publishers.Google Scholar
  38. 39.
    Vivier MA and Pretorius IS (2002). Genetically tailored grapevines for the wine industry. Trends in Biotechnology, 20: 472–478.PubMedCrossRefGoogle Scholar
  39. 40.
    Perl A, Sahar N, Spiegel-Roy P, Gavish S, Elyassi R, Orr E and Bazak H (2000). Conventional and biotechnological approaches in breeding seedless table grapes. Acta Horticulturae, 528: 607–612.Google Scholar
  40. 41.
    Mezzetti B, Pandolfini T, Navacchi O and Landi L (2002). Genetic transformation of Vitis vinifera via organogenesis. Bio-Med Central Biotechnology, 2: 18.Google Scholar
  41. 42.
    Gollop R, Farhi S and Perl A (2001). Regulation of the leucoanthocyanidin dioxygenase gene expression in Vitis vinifera. Plant Science, 161: 579–588.CrossRefGoogle Scholar
  42. 43.
    Gollop R, Even S, Colova-Tsolova V and Perl A (2002). Expression of the grape dihydroflavonol reductase gene and analysis of its promoter region. Journal of Experimental Botany, 53: 1397–1409.PubMedCrossRefGoogle Scholar
  43. 44.
    Torregrosa L, Verrios C and Tesniore C (2002a). Grapevine (Vitis vinifera L.) promoter analysis by biolistic-mediated transient transformation of cell suspension. Vitis, 41: 27–32.Google Scholar
  44. 45.
    Torregrosa L, Lopez G and Bouquet A (2000). Antibiotic sensitivity of grapevine: A comparison between the effect of hygromycin on shoot development of transgenic 110 Richter rootstock (Vitis Berlandieri X Vitis rupestris) South African Journal of Enology and Viticulture, 21: 32–39.Google Scholar
  45. 46.
    Harst M, Bornhoff BA, Zyprian E and Topfer R (2000). Influence of culture technique and the genotype on the efficiency of Agrobacterium-mediated transformation of somatic embryos (Vitis vinifera) and their conversion to transgenic plants. Vitis, 39: 99–102.Google Scholar
  46. 47.
    Davis C and Boss PK (2000). The use of molecular biology techniques to study and manipulate the grapevine: Why and how? Australian Journal of Grape and Wine Research, 6: 159–167.CrossRefGoogle Scholar
  47. 48.
    Vivier MA and Pretorius IS (2000). Genetic improvement of grapevine: Tailoring grape varieties for the third millennium — a review. South African Journal of Enology and Viticulture, 21: 5–26.Google Scholar
  48. 49.
    Spielmann A, Krastanova S, Douet-Orhand V and Gugerli P (2000). Analysis of transgenic grapevine (Vitis vinifera) and Nicotiana benthamiana plants expressing an Arabis mosaic virus coat protein gene. Plant Science, 156: 235–244.PubMedCrossRefGoogle Scholar
  49. 50.
    Scorza R, Cordts JM, Gray DJ, Gonsalves D, Emershad RL and Ramming DW (1996). Producing transgenic “Thompson seedless” grape (Vitis vinifera) plants. Journal of American Society for Horticultural Science, 121: 616–619.Google Scholar
  50. 51.
    Li Z, Jayasankar S and Gray DJ (2001b). An improved enzyme-linked immunoabsorbent assay protocol for the detection of small lytic peptides in transgenic grapevines (Vitis vinifera). Plant Molecular Biology Reporter, 19: 341–351.CrossRefGoogle Scholar
  51. 52.
    Vidal JR, Kikkert JR, Wallace PG and Reisch BI (2003). High-efficiency biolistic co-transformation and regeneration of ‘Chardonnay’ (Vitis vinifera L.) containing nptll and antimicrobial peptide genes. Plant Cell Reports, 22: 252–260.PubMedCrossRefGoogle Scholar
  52. 53.
    Coutos-Thevenot P, Poinssot B, Bonomelli A, Year H, Breda C, Buffard D, Esnault R, Hain R et al. (2001). In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst1l gene under the control of a pathogen-inducible PR 10 promoter. Journal of Experimental Botany, 52: 901–910.PubMedCrossRefGoogle Scholar
  53. 54.
    Guille’n P, Guis M, Martinez-Reina G, Colrat S, Dalmayrac S, Deswarte C, Bouzayen M, Roustan JP et al. (1998). A novel NADPH-dependent aldehyde reductase gene from Vigna radiata confers resistance to the grapevine fungal toxin eutypine. The Plant Journal, 16: 335–343.CrossRefGoogle Scholar
  54. 55.
    Amborabe BE, Fleurat-Lessard P, Bonmort J, Roustan JP and Robin G (2000). Effects of eutypine, a toxin from Eutypa lata, on the plant cell plasma membrane. Plant Physiology and Biochemistry, 38: 51–58.Google Scholar
  55. 56.
    Legrand V, Dalmayarc S, Latche A, Pech JC, Bouzayen M, Fallot J, Torregrosa L, Bouquet A et al. (2003). Constitutive expression of Vr-ERE gene in transformed grapevines confers enhanced resistance to eutypine, a toxin from Eutypa lata. Plant Science, 164: 809–814.CrossRefGoogle Scholar
  56. 57.
    Bouquet A, Pauquet J, Adam-Blondon AF, Torregrosa L, Merdinoglu D and WiedemannMerdinoglu J (2000). Towards the obtention of grapevine varieties resistant to downy mildews by conventional breeding and biotechnology. Progros Agricole et Viticole, 117: 383–389.Google Scholar
  57. 58.
    Koltunow AM, Brennan P, Bond JE and Barker SJ (1998). Evaluation of genes to reduce seed size in Arabidopsis and tobacco and their application to Citrus. Molecular Breeding, 4: 235–251.CrossRefGoogle Scholar
  58. 59.
    Rotino GL, Perri E, Zottini M, Sommer H and Spena A (1997). Genetic engineering of parthenocarpic plants. Nature Biotechnology, 15: 1398–401.PubMedCrossRefGoogle Scholar
  59. 60.
    Hood EE, Gelvin SB, Melchers LS and Hoekema A (1993). New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Research, 2: 208–218.CrossRefGoogle Scholar
  60. 61.
    Murashige T and Skoog F (1962). A revised medium for the rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15: 473–497.CrossRefGoogle Scholar
  61. 62.
    Nitsch JP and Nitsch C (1969). Haploid plants from pollen grains. Science, 163: 85–87.PubMedCrossRefGoogle Scholar
  62. 63.
    Lloyd G and McCown B (1980). Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by the use of shoot-tip cultures. International Plant Propagation Society Proceedings, 30: 421–427.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Department of Fruit Tree SciencesInstitute of Horticulture, Agricultural Research OrganizationBet-DaganIsrael
  2. 2.Center for Viticulture ScienceFlorida A&M UniversityTallahasseeUSA

Personalised recommendations