Advertisement

Noise Radiation from High-Speed Jets: Some Insights from Numerical Simulations

  • Sanjiva K. Lele
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 9)

Abstract

The noise emanating from high-speed jets consists of jet mixing noise and shockassociated noise with its tonal and broadband components. This paper summarizes well-known features of high-speed jet flows and their relationship to the noise radiated by the jet. Open issues on which different opinions exist are also noted. In this context key findings from numerical simulations of jet flows, and model problems related to jet flows are highlighted. The mechanism responsible for the generation of strong screech noise is discussed, and the role of large-scale structures in jet mixing noise and broadband shock-associated noise are stressed. Implications of a new analytical model of shock-cell noise generation are discussed, and in particular the scaling of shock-associated noise from heated jets.

Keywords

Shear Layer Compression Wave Noise Radiation Noise Prediction Mach Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Lilley, G. M. in Vol 1, NASA R. P. 1258, 1991.Google Scholar
  2. [2]
    Tam, C. K. W. in Vol 1, NASA R. P. 1258, 1991.Google Scholar
  3. [3]
    Goldstein, M. E. in Vol 1, NASA R. P. 1258, 1991.Google Scholar
  4. [4]
    Tam, C. K. W., Ann. Rev. Fluid Mech., 1995, 27, p. 17–43.ADSCrossRefGoogle Scholar
  5. [5]
    Proceedings of the Jet Noise Workshop, NASA/CP 2001–211152, Nov. 2001.Google Scholar
  6. [6]
    Farge, M. Ann. Rev. Fluid Mech., 1992, 24, p. 395–457.MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    Berkooz, G., Holmes, P. and Lumley, J. L. Ann. Rev. Fluid Mech., 1993, 25, p. 539–575.MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    Freund, J. B. and Colonius, T. 2002, AIAA-2002–0072.Google Scholar
  9. [9]
    Citriniti, J. H. and George, W. K., J. Fluid Mech., 418, 2000, p. 137–166.ADSMATHCrossRefGoogle Scholar
  10. [10]
    Arndt, R. E. A., Long, D. F. and Glauser, M. N., J. Fluid Mech., 340, 1997, p. 1–33.ADSCrossRefGoogle Scholar
  11. [11]
    Gordeyev, S. V. and Thomas, F. O., J. Fluid Mech., 414, 2000, p. 145–194.ADSMATHCrossRefGoogle Scholar
  12. [12]
    Michalke, A. and Fuchs, H. V., J. Fluid Mech., 70, 1975, p. 179–205.ADSMATHCrossRefGoogle Scholar
  13. [13]
    Davies, P.O. A. L., Fisher, M. J. and Barratt, M. J., J. Fluid Mech., 15, 1963, p. 337–367Google Scholar
  14. Davies, P.O. A. L., Fisher, M. J. and Barratt, M. J., Corrigendum J. Fluid Mech., 15, 1963, p. 559.Google Scholar
  15. [14]
    Bradshaw, P., Ferriss, D. H. and Johnson, R. F., J. Fluid Mech., 19, 1964, p. 591–624.ADSMATHCrossRefGoogle Scholar
  16. [15]
    Zaman, K. B. M. Q., J. Sound Vib., 106, 1986, p. 1–6.ADSCrossRefGoogle Scholar
  17. [16]
    Hussein, H. J., Capp, S. P. and George, W. K., J. Fluid Mech., 258, 1994, p. 31–75.ADSCrossRefGoogle Scholar
  18. [17]
    Panchapakesan, N. R. and Lumley. J. L., J. Fluid Mech., 246, 1993, p. 197–223.ADSCrossRefGoogle Scholar
  19. [18]
    Plaschko, P., Phys. Fluids, 24, 1981, p. 187–193.ADSMATHCrossRefGoogle Scholar
  20. [19]
    Plaschko, P., Phys. Fluids, 26, 1983, p. 2368–2372.ADSMATHCrossRefGoogle Scholar
  21. [20]
    Tam, C. K. W. and Chen, K. C., J. Fluid Mech., 92, 1979, p. 303–326.ADSMATHCrossRefGoogle Scholar
  22. [21]
    Morris, P. J., Giridharan, M.G. and Lilley, G. M., Proc. Royal Soc. London, Ser. A, 431,1990, p.213–243.Google Scholar
  23. Vishwanathan, K. and Morris, P. J., AIAA J., 30, 1992, p. 1529–1536.ADSCrossRefGoogle Scholar
  24. [22]
    Tam, C. K. W., J. Sound Vib., 116, 1987, p. 265–302.ADSCrossRefGoogle Scholar
  25. [23]
    Tam, C. K. W. and Auriault, L. AIAA J. 1999, 37, p. 145–153.ADSCrossRefGoogle Scholar
  26. [24]
    Lighthill, J., Proc. Roy. Soc. A., 1952, 211, p. 564–587.MathSciNetADSMATHCrossRefGoogle Scholar
  27. [25]
    Lighthill, M. J., Proc. Roy. Soc. A., 1962, 267, p. 147–182.ADSMATHCrossRefGoogle Scholar
  28. [26]
    Lighthill, M. J., AIAA J., 1963, 1, p. 1507–1517.MATHCrossRefGoogle Scholar
  29. [27]
    Ffowcs Williams, J. E., Phil. Trans. Roy. Soc. A., 1963, 255, 469–503.ADSCrossRefGoogle Scholar
  30. [28]
    Lilley, G. M. AGARD CP 131, Noise Mechanisms, 1974.Google Scholar
  31. [29]
    Goldstein, M. E., Aeroacoustics, 1976, McGraw Hill.Google Scholar
  32. [30]
    Bailly, C., Lafon, P., Candel, S., AIAA J., 35, 1997, p. 1688–1696.ADSMATHCrossRefGoogle Scholar
  33. [31]
    Khavran, A., AIAA J., 1999, 37, p. 832–841.ADSCrossRefGoogle Scholar
  34. [32]
    Morris, P. J. and Farrasat, F., 2002, AIAA J., 40, p. 671–680.ADSCrossRefGoogle Scholar
  35. [33]
    Gaster, M., Kit, E. and Wygnanski, I., J. Fluid Mech., 150, 1985, p. 23–39.ADSCrossRefGoogle Scholar
  36. [34]
    Crighton, D. G. and Gaster, M., J. Fluid Mech., 77, 1976, p. 397–413.ADSMATHCrossRefGoogle Scholar
  37. [35]
    Liu, J. T. C., J. Fluid Mech., 62, 1974, p. 437–464.ADSMATHCrossRefGoogle Scholar
  38. [36]
    Tam, C. K. W. and Morris, P.J., J. Fluid Mech., 98, 1980, p. 349–381.MathSciNetADSMATHCrossRefGoogle Scholar
  39. [37]
    Tam, C. K. W. and Burton, D. E., J. Fluid Mech., 138, 1984, p. 273–295.MathSciNetADSMATHCrossRefGoogle Scholar
  40. [38]
    Crighton, D. G. and Huerre, P., J. Fluid Mech., 220, 1990, p. 255–268.CrossRefGoogle Scholar
  41. [39]
    Mankbadi, R. and Liu, J. T. C., Phil. Trans. Royal Soc. A, 298, 541–602.Google Scholar
  42. [40]
    Tam, C. K. W. and Morris, P. J., J. Sound Vib., 102, 1985, p. 119–151.ADSCrossRefGoogle Scholar
  43. [41]
    Morris, P. J., Long, L. N., Scheidegger, T. E., Wang, Q. and Pilon, A. R., AIAA-98–2290.Google Scholar
  44. [42]
    Yen, C. and Messersmith, N. 1999. AIAA 99–1859.Google Scholar
  45. [43]
    Day, M., Mansour, N. and Reynolds, W. C., J. Fluid Mech., 446, 2001, p. 375–408.MathSciNetADSMATHGoogle Scholar
  46. [44]
    Mohseni, K., Colonius, T. and Freund, J. B., Phys. Fluids, 14, 2002, p. 3593–3600.ADSCrossRefGoogle Scholar
  47. [45]
    Tam, C. K. W., Golebiowski, M. and Seiner, J. M. AIAA 96–1716.Google Scholar
  48. [46]
    Bogey, C., Bailly, C. and D. Juve. AIAA/CEAS-2000–2009.Google Scholar
  49. [47]
    Zhao, W., Frankel, S. and Mongeau, L. AIAA 2000–2078.Google Scholar
  50. [48]
    Constantinescu, G. S. and S. K. Lele, AIAA Paper, 2001–0376, Reno.Google Scholar
  51. [49]
    Bodony, D. J. and Lele S. K., 2002, submitted to Theor. Comput. Fluid Dyn.Google Scholar
  52. [50]
    Freund, J. B. and S. K. Lele. 2003. in High Speed Jet Flows Editors: G. Raman, D. Mclaughlin, P. Morris, Taylor and Francis.Google Scholar
  53. [51]
    Stromberg, J. L., Mc Laughlin, D. K. and Troutt, T. R. 1980. J. Sound Vib., 72, 159–176.ADSCrossRefGoogle Scholar
  54. [52]
    Mollo-Christensen, E., Kolpin, M. A. and Martucelli, J. R. 1964. J. Fluid Mech., 18, 285–301.ADSCrossRefGoogle Scholar
  55. [53]
    Freund, J. B., J. Fluid Mech., 438, 2001, p. 277–305.ADSMATHCrossRefGoogle Scholar
  56. [54]
    Freund, J. B. AIAA 2002–2423.Google Scholar
  57. [55]
    Lau, J. C., Morris, P. J. and Fisher, M. J. 1979. J. Fluid Mech., 93, 1–27.ADSCrossRefGoogle Scholar
  58. [56]
    Zaman, K. B. M. Q. 1986. J. Sound Vib., 106, p. 1–16.ADSCrossRefGoogle Scholar
  59. [57]
    Tanna, H. K. 1977. J. Sound Vib., 50, p. 405–428.ADSCrossRefGoogle Scholar
  60. [58]
    Ahuja, K. K. 1974 J. Sound Vib., 29, p. 155–168.ADSCrossRefGoogle Scholar
  61. [59]
    Troutt, T. R. and McLaughlin, D. K., J. Fluid Mech., 116, 1982, p. 123–156.ADSCrossRefGoogle Scholar
  62. [60]
    Tam, C. K. W., Chen, P. and Seiner, J. M., AIAA J., 30, 1992, p. 1747–1752.ADSCrossRefGoogle Scholar
  63. [61]
    Seiner, J. M., Bhat, T. R. S. and Ponton, M. K.,AIAA J., 32, 1994, p. 2345–2350.ADSCrossRefGoogle Scholar
  64. [62]
    Mankbadi, R., Hixon, R., Shih, S. H., Povinelli, L. A., AIAA J., 36, 1998, p. 140–147.ADSMATHCrossRefGoogle Scholar
  65. [63]
    Papamoschou, D. and Debiasi, M. AIAA J., 39, p. 380–387.Google Scholar
  66. [64]
    Powell, A. Proc. Phys. Soc. London 66, 1953, p. 1039–1056.ADSCrossRefGoogle Scholar
  67. [65]
    Raman, G., Prog. Aerospace Sci., 34, 1998, p. 45–106.ADSCrossRefGoogle Scholar
  68. [66]
    Shen, H. and Tam, C. K. W., AIAA J., 36, 1998, p. 1801–1809.ADSCrossRefGoogle Scholar
  69. [67]
    Zhang X., Rona A. and Lilley, G. M. CEAS/AIAA Aeroacoustics Conference, Vol 1, 1995, p. 285–292.Google Scholar
  70. [68]
    Walker, S. and Thomas, F. O., Phys. Fluids, 9, 1997, p. 2562–2579.ADSCrossRefGoogle Scholar
  71. [69]
    Manning, T. and S. K. Lele. AIAA paper, 98–0282, Reno.Google Scholar
  72. [70]
    Manning, T. A. and S. K. Lele. AIAA Paper, 2000–2081.Google Scholar
  73. [71]
    Stuart, J. T., J. Fluid Mech., 29, 1967, p. 417–440.ADSMATHCrossRefGoogle Scholar
  74. [72]
    Suzuki, T. and Lele, S. K. J. Fluid Mech., 490, 2003, p. 139–167.ADSMATHCrossRefGoogle Scholar
  75. [73]
    Alkislar, M. B., Krothapalli, A. and Lourenco, L. M. 2003. to appear in J. Fluid Mech.Google Scholar
  76. [74]
    Harper-Bourne, M. and Fisher, M. J. AGARD CP 131, Noise Mechanisms, 1974.Google Scholar
  77. [75]
    Tam, C. K. W. and Tanna, H. K., J. Sound Vib., 81, 1982, p. 337–358.ADSMATHCrossRefGoogle Scholar
  78. [76]
    Tam, C. K. W., J. Sound Vib., 140, 1990, p. 55–71.ADSMATHCrossRefGoogle Scholar
  79. [77]
    Tam, C. K. W. AIAA J., 30, 1992, p. 2395–2401.ADSCrossRefGoogle Scholar
  80. [78]
    Norum, T. D. and Seiner, J. M., NASA TM 84521, 1982.Google Scholar
  81. [79]
    Lui, C. and Lele, S. K., AIAA-2002–0074, Reno, 2002.Google Scholar
  82. [80]
    Lui, C. and Lele, S. K. AIAA-2003–3315, Hilton Head.Google Scholar
  83. [81]
    Lele, S. K. 2003. submitted to Phys. Fluids.Google Scholar
  84. [82]
    Kerschen, E. J. and Cain, A. 1995. AIAA Paper 95–0507.Google Scholar
  85. [83]
    Freund, J. B., Lele, S. K. and Moin, P., AIAA J., 38, 2000, p. 2023–2031.ADSCrossRefGoogle Scholar
  86. [84]
    Colonius, T., S. K. Lele, and P. Moin, J. Fluid Mech., 330, 1997, pp. 375–409.ADSMATHCrossRefGoogle Scholar
  87. [85]
    Crighton, D. G. Progr. Aerospace Sci., 16, 1975, p. 129–146.ADSCrossRefGoogle Scholar
  88. [86]
    Laufer J. and Yen T. C., J. Fluid Mech., 134, 1983, p. 1–31.ADSCrossRefGoogle Scholar
  89. [87]
    Crow, S. C., Bull. Am. Phys. Soc., 1972.Google Scholar
  90. [88]
    Fuchs, H. V. and Michalke, A. Progr. Aerospace Sci., 14, 1973, p. 229ADSCrossRefGoogle Scholar
  91. [89]
    Freund, J. B., Bodony, D. J. and Lele, S. K. 2002. in Proc. CTR Summer Program 2002.Google Scholar
  92. [90]
    Constantinescu, G. and Lele, S. K., J. Comput. Phys., 183, 2002, p. 165–186.ADSMATHCrossRefGoogle Scholar
  93. [91]
    Visbal, M. R., and Gaitonde, D. V. 1998. AIAA 98–0131, Reno.Google Scholar
  94. [92]
    Bogey, C. and Bailly, C. 2002. in Proceedings of CEAS Workshop ‘From CFD to CAA’.Google Scholar
  95. [93]
    Bertolotti, F. P. and Colonius, T., AIAA 2003–1062, Reno.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Sanjiva K. Lele
    • 1
  1. 1.Department of Aeronautics & Astronautics and Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations