Advertisement

Evaluation of Fractal Dimension by Gas Adsorption

  • S. Lowell
  • Joan E. Shields
  • Martin A. Thomas
  • Matthias Thommes
Part of the Particle Technology Series book series (POTS, volume 16)

Abstract

The concepts of fractal geometry elaborated by Mandelbrot [1] can be applied successfully to the study of solid surfaces. Fractal objects are self-similar, i.e., they look similar at all levels of magnification. The geometric topography (roughness) of the surface structure of many solids can be characterized by the fractal dimension, D. In the case of a Euclidean surface D is 2, however for an irregular (real) surface D may vary between 2 and 3. The magnitude of D may depend on the degree of roughness of the surface and/or the porosity. There exist several experimental methods to determine the fractal dimension, e.g., small-angle X-ray (SAXS) and small-angle neutron scattering measurements (SANS), adsorption techniques and mercury porosimetry. All these techniques search for a simple scaling power law of the type: Amount of surface propertyresolution of analysis D [2], where D is the fractal dimension of the surface for which the property is relevant. Amount of surface property can for instance be related to the intensity of scattered radiation, pore volume or monolayer capacity. The change in resolution is here achieved by changing the scattering angle, pore radius or the size of the adsorbate.

Keywords

Fractal Dimension Small Angle Neutron Scattering Mercury Porosimetry Porous Solid Thermodynamic Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mandelbrot B. (1982) Fractal Geometry of Nature, Freeman, San Francisco.Google Scholar
  2. 2.
    Rouquerol J., Avnir D., Fairbridge C.W., Everett D.H., Haynes J.H., Pernicone N., Ramsay J.D.F., Sing K.S.W. and Unger K.K. (1994) Pure Appl. Chem. 66, 1740.CrossRefGoogle Scholar
  3. 3.
    Farin D. and Avnir D. (1989) In The Fractal Approach to Heterogeneous Chemistry (D. Avnir, ed) Wiley, Chichester.Google Scholar
  4. 4.
    Pfeifer P. and Avnir D. (1983) J. Chem. Phys. 79, 3558;CrossRefGoogle Scholar
  5. Avnir D., Farin D. and Pfeifer P. (1984) Nature 33, 261.CrossRefGoogle Scholar
  6. 5.
    Pfeifer P., Kenntner J. and Cole M.W. (1991) In: Fundamentals of Adsorption (A.B. Mersmann and S.E. Sholl, eds.) Engineering Foundation, New York.Google Scholar
  7. 6.
    Neimark A.V. (1991) Adv. Sci. Tech. 7, 210;Google Scholar
  8. Neimark A.V. (1992) Physica A 191, 258;CrossRefGoogle Scholar
  9. Neimark A.V. (1993) In Multifunctional Mesoporous Inorganic Solids, (C.A.C. Sequeria and M.J. Hudson, eds) Kluwer, Dordrecht.Google Scholar
  10. 7.
    Gregg S.J. and Sing K.S.W. (1982) Adsorption, Surface Area and Porosity, Academic Press, London.Google Scholar
  11. 8.
    Xu W., Zerda T.W., Yang H. and Gerspacher M. (1996) Carbon 34, 165.CrossRefGoogle Scholar
  12. 9.
    Rudzinski W. and Everett D.H. (1992) Adsorption of Gases on Heterogeneous Surfaces, Academic Press, London.Google Scholar
  13. 10.
    Avnir D. and Jaroniec M. (1989) Langmuir 5, 1431.CrossRefGoogle Scholar
  14. 11.
    Yin Y. (1991) Langmuir 7, 216.CrossRefGoogle Scholar
  15. 12.
    Pfeifer P., Wu Y.J., Cole M.W. and Krim J. (1989) Phys. Rev. Lett. 62, 1997.CrossRefGoogle Scholar
  16. 13.
    Krim J. and Panella V. (1991) In: Characterization of Porous Solids II (Rodriguez- Reinoso F., Rouquerol J., Sing K.S.W. and Unger K.K., eds) Elsevier, Amsterdam.Google Scholar
  17. 14.
    Sahouli B., Blacher S. and Brouers F. (1996) Langmuir 12, 2872;CrossRefGoogle Scholar
  18. Sahouli B., Blacher S. and Brouers F. (1997) Langmuir 13, 94.CrossRefGoogle Scholar
  19. 15.
    Neimark A.V. and Unger K.K. (1993) J. Colloid Interface Sci. 158, 412.CrossRefGoogle Scholar
  20. 16.
    a)Rudzinski W., Lee S.-L., Panczyk T. and Yan C.-C. S. (2001) J.Phys. Chem B 105, 10847;CrossRefGoogle Scholar
  21. Rudzinski W., Lee S.-L., Panczyk T. and Yan C.-C. S. (2001) J. Phys. Chem B 105, 10857.CrossRefGoogle Scholar
  22. 17.
    Fripiat J.J., Gatineau L. and Van Damme H. (1986) Langmuir 2, 562.CrossRefGoogle Scholar
  23. 18.
    Laszlo K., Bota A., Nagy L.G., Subklew G. and Schwuger M. (1998) J. Colloids Surf. A: Physicochemical and Engineering Aspects 138, 29.CrossRefGoogle Scholar
  24. 19.
    Weidler P., Degovics G. and Laggner P. (1998) J. Colloid Interface Sci. 197, 1.CrossRefGoogle Scholar
  25. 20.
    Qi H., Ma. J. and Wong P. (2001) Phys. Rev. E 63, 4 1601;Google Scholar
  26. Qi H., Ma J. and Wong P. (2002) Colloids Surf. A: Physicochemical and Engineering Aspects 206, 401.CrossRefGoogle Scholar
  27. 21.
    Sonwane C.G., Bhatia S.K. and Calos N.J. (1999) Langmuir 15, 4603.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • S. Lowell
    • 1
  • Joan E. Shields
    • 2
  • Martin A. Thomas
    • 1
  • Matthias Thommes
    • 1
  1. 1.Quantachrome InstrumentsBoynton BeachUSA
  2. 2.C.W. Post Campus of Long Island UniversityUSA

Personalised recommendations