Advertisement

Dynamic Chemisorption: Catalyst Characterization by Flow Techniques

  • S. Lowell
  • Joan E. Shields
  • Martin A. Thomas
  • Matthias Thommes
Part of the Particle Technology Series book series (POTS, volume 16)

Abstract

Under conditions of dynamic flow, controlled heating rates can be used to acquire characteristic reaction rate curves that can be used to classify, or fingerprint, different catalysts.

Keywords

Temperature Program Desorption Temperature Program Reduction Thermal Conductivity Detector Catalyst Characterization Porous Solid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burwell R.L. and Taylor H.S. (1936) J. Am. Chem. Soc. 58, 1753.CrossRefGoogle Scholar
  2. 2.
    Moon H-D., Lim T-H. and Lee H-I. (1999) Bull. Korean Chem. Soc. 20, 1413.Google Scholar
  3. 3.
    Liang C., Wei Z., Luo M., Ying P., Xin Q. and Li C. (2001) Stud. Surf. Sci. Catal. 138, 283.CrossRefGoogle Scholar
  4. 4.
    Hoa Z., An L. and Wang H. (2001) Sci. China, Ser. B 44, 596.CrossRefGoogle Scholar
  5. 5.
    Fernández-García M., Martínez-Arias A., Iglesias-Juez A., Belver C., Hungaria A.B., Conesa J.C. and Soria J. (2000) J. Catal. 194, 385.CrossRefGoogle Scholar
  6. 6.
    Kim D.H., Ahn B.J., Koslova A., Kung H.H. and Kung M.C. (2002) ACS Petr. Chem. Div. Preprints 47, 380.Google Scholar
  7. 7.
    Adamopoulos O., Zhang Y., Croft M., Zakharchenko I., Tsakalakos T. and Muhammed M. (2001) Mat. Res. Soc. Symp. Proc. 676, Y8111.CrossRefGoogle Scholar
  8. 8.
    Wang S. and Lu G.Q. (1998) Appl. Catal. B 19, 267.CrossRefGoogle Scholar
  9. 9.
    Biscardi J.A., Meitzner G.D. and Iglesia E. (1998) J. Catal. 179, 192.CrossRefGoogle Scholar
  10. 10.
    Kitiyanan B., Alvarez W.E., Harwell J.H. and Resasco D.E. (2000) Chem. Phys. Lett. 317, 497.CrossRefGoogle Scholar
  11. 11.
    Herrera J.E. and Resasco D.E. (2003) Chem. Phys. Lett. 376, 302.CrossRefGoogle Scholar
  12. 12.
    Wang S. and Lu G.Q. (2000) J. Chem. Technol. Biotechnol. 75, 589.CrossRefGoogle Scholar
  13. 13.
    Altin O., Bock G. and Eser S. (2002) ACS Petr. Chem. Div. Preprints 47, 208.Google Scholar
  14. 14.
    Lee H.C., Woo H.C., Ryoo R., Lee K.H. and Lee J.S. (2000) Appl. Catal. A 196, 135.CrossRefGoogle Scholar
  15. 15.
    Lojewska J. (2001) Stud. Surf. Sci. Catal. 139, 13.CrossRefGoogle Scholar
  16. 16.
    Nagaoka K., Okamura M. and Aika K. (2001) Catal. Commun. 2, 255.CrossRefGoogle Scholar
  17. 17.
    McIntosh S., Vohs J.M. and Gorte R.J. (2003) J. Electrochem. Soc. 150, A470.CrossRefGoogle Scholar
  18. 18.
    Teixeira da Silva V.L.S., Schmal M., Schwartz V. and Oyama S.T. (1998) J. Mat. Res. 13, 1977.Google Scholar
  19. 19.
    Kim Y.H., Borry R.W. and Iglesia E. (2000) Micropor. Mesopor. Mater. 35–36, 495.CrossRefGoogle Scholar
  20. 20.
    Ding W., Li S., Meitzner G.D. and Iglesia E. (2001) J. Phys. Chem., B 105, 506.CrossRefGoogle Scholar
  21. Ahn B.J., Park J.R. and Chon H. (1989) J. Korean Chem. Soc (Korean) 33, 177.Google Scholar
  22. 22.
    Wang. B., Lee C.W., Cai T-X. and Park S.E. (2001) Bull. Korean Chem. Soc. 22, 1056.Google Scholar
  23. 23.
    Katada N., Kageyama Y. and Nawa M. (2000) J. Phys. Chem., B 104, 7561.CrossRefGoogle Scholar
  24. 24.
    Takami M., Yamazaki Y. and Hamada H. (2001) Electrochemistry 69, 98.Google Scholar
  25. 25.
    Amin N.A.S. and Angorro D.D. (2003) J. Nat. Gas Chem. 12, 123.Google Scholar
  26. 26.
    Pérez-Ramírez J., Mul G., Kapteijn F., Moulijn J.A., Overweg A.R., Doménech A., Ribera A. and Arends I.W.C.E. (2002) J. Catal. 207, 113.CrossRefGoogle Scholar
  27. 27.
    Lü R., Tangbo. H., Wang. Q. and Xiang S. (2003) J. Nat. Gas Chem. 12, 56.Google Scholar
  28. 28.
    Bi Y. and Dalai A.K. (2003) Can. J. Chem. Eng. 81, 230.CrossRefGoogle Scholar
  29. 29.
    Sivalingam G., Nagaveni K., Madras G. and Hegde M.S. (2003) Ind. Eng. Chem. Res. 42, 687.CrossRefGoogle Scholar
  30. 30.
    Hunger B., Hoffmann J., Heitzsch O. and Hunger M. (1990) J. Therm. Anal. 36, 1379.CrossRefGoogle Scholar
  31. 31.
    Joo O-S., Jung K-D. and Han S-H. (2002) Bull. Korean Chem. Soc. 23, 1103.CrossRefGoogle Scholar
  32. 32.
    Lin H-e. and Ko A-N. (2000) J. Chinese Chem Soc. 47, 509.Google Scholar
  33. Wang. B., Lee C.W., Cai T-X. and Park S.E. (2001) Catal. Lett. 76, 219.CrossRefGoogle Scholar
  34. 34.
    Matsuura H., Katada N. and Niwa M. (2002) Presented at: 2 nd International FEZA Conference, Taormina, Italy, Sept. 1–5.Google Scholar
  35. 35.
    Singh A.P. and Venkatesan C. (2003) Bull. Catal. Soc. India 2, 43.Google Scholar
  36. 36.
    Thomas M.A. This work, previously unpublished.Google Scholar
  37. 37.
    Igi. H., Katada N. and Niwa M. (1997) In Proceedings of the International Symposium on Microporous Crystalline Materials, ZMPC’97, Waseda University, Tokyo, Japan, August 24–27, p 113.Google Scholar
  38. 38.
    Jentys A. and Lercher J.A. (200 1) In Introduction to Zeolite Science and Practice 2nd Edn. (van Bekkum H. et al, eds.) Elsevier, Amsterdam, p345.Google Scholar
  39. 39.
    Di Cosimo J.I., Díez V.K., Xu M., Iglesia E. and Apesteguía C.R. (1998) J. Catal. 178, 499.CrossRefGoogle Scholar
  40. 40.
    Sauvet A-L., Fouletier J., Gaillard F. and Primet M. (2002) J. Catal. 209, 25.CrossRefGoogle Scholar
  41. 41.
    McGee R.C., Bej S.K. and Thompson L.T. (2003) “Characterization of Base Sites on Molybdenum Nitride Catalysts” presented at the 18th NAM ( North American Catalysis Society) Cancun, Mexico.Google Scholar
  42. 42.
    Bondzie V.A., Parker S.C. and Campbell C.T. (1999) Catal. Lett. 63, 143.CrossRefGoogle Scholar
  43. 43.
    Huang W.X., Teng J.W. and Bao X.H. (2001) Surf. Interface Anal. 32, 179.CrossRefGoogle Scholar
  44. 44.
    Rassoul M., Gaillard F., Garbowski E. and Primet M. (2001) J. Catal. 203, 232.CrossRefGoogle Scholar
  45. Yang L., Kresnawahjuesa O. and Gorte R.J. (2001) Catal. Lett. 72, 33.CrossRefGoogle Scholar
  46. 46.
    Kim Y.D. and Over H. (2001) Top. Catal. 14, 95.CrossRefGoogle Scholar
  47. 47.
    Over H. (2002) Appl. Phys., A 75, 37.CrossRefGoogle Scholar
  48. 48.
    Heiz U., Sanchez A., Abbet S. and Schneider W-D. (1999) Eur. Phys. J. D 9, 1.CrossRefGoogle Scholar
  49. 49.
    Martínez-Arias A., Fernández-García M., Gálvez O., Coronado J.M., Anderson J.A., Conesa J.C., Soria J. and Munuera G. (2000) J. Catal. 195, 207.CrossRefGoogle Scholar
  50. 50.
    Zhang Z., Jackson J.E. and Miller D.J. (2001) Appl. Catal. A 219, 89.CrossRefGoogle Scholar
  51. 51.
    Miller J.T., Meyers B.L., Barr M.K., Modica F.S. and Koningsberger D.C. (1996) J. Catal. 159, 41.CrossRefGoogle Scholar
  52. 52.
    Genger T., Hinrichsen O. and Muhler M. (1999) Catal. Lett. 59, 137.CrossRefGoogle Scholar
  53. 53.
    Tabatabaei J., Sakakini B.H., Watson M.J. and Waugh K.C. (1999) Catal. Lett. 59, 143.CrossRefGoogle Scholar
  54. 54.
    Arai M., Nishiyama Y., Masuda T. and Hashimoto K. (1995) Appl. Surf. Sci. 89, 11.CrossRefGoogle Scholar
  55. 55.
    Chakrapani N., Zhang Y.M., Nayak S.J., Moore J.A., Carroll D.L., Choi Y.Y. and Ajayan P.M. (2003) J. Phys. Chem. B 107, 9308–9311.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • S. Lowell
    • 1
  • Joan E. Shields
    • 2
  • Martin A. Thomas
    • 1
  • Matthias Thommes
    • 1
  1. 1.Quantachrome InstrumentsBoynton BeachUSA
  2. 2.C.W. Post Campus of Long Island UniversityUSA

Personalised recommendations