Advertisement

Physical Adsorption Measurement: Preliminaries

  • S. Lowell
  • Joan E. Shields
  • Martin A. Thomas
  • Matthias Thommes
Part of the Particle Technology Series book series (POTS, volume 16)

Abstract

The adsorbed amount as a function of pressure can be obtained by volumetric (manometric) and gravimetric methods, carrier gas and calorimetric techniques, nuclear resonance as well as by a combination of calorimetric and impedance spectroscopic measurements (for an overview see refs [1–3]). However, the most frequently used methods are the volumetric (manometric) and the gravimetric methods. The gravimetric method is based on a sensitive microbalance and a pressure gauge. The adsorbed amount can be measured directly, but a pressure dependent buoyancy correction is necessary. The gravimetric method is convenient to use for the study of adsorption not too far from room temperature. The adsorbent is not in direct contact with the thermostat and it is therefore more difficult to control and measure the exact temperature of the adsorbent at both high and cryogenic temperatures. Therefore, the volumetric method is recommended to measure the adsorption of nitrogen, argon and krypton at the temperatures of liquid nitrogen (77.35 K) and argon (87.27 K) [4].

Keywords

Adsorbed Amount Gravimetric Method Magnesium Stearate Porous Solid Repetitive Cycling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Keller J.U., Robens E. and du Fresne von Hohenesche C. (2002) Stud. Surf. Sci. Catal. 144, 387.CrossRefGoogle Scholar
  2. 2.
    Mikhail R.Sh. and Robens E. (1983) Microstructure and Thermal Analysis of Solid Surfaces, Wiley, Chichester.Google Scholar
  3. 3.
    Kaneko K., Ohba T., Hattori Y., Sunaga M., Tanaka H. and Kanoh H. (2002) Stud. Surf. Sci. Catal. 144, 11.CrossRefGoogle Scholar
  4. 4.
    Sing K.S.W., Everett D.H., Haul R.A.W., Mouscou L., Pierotti R.A, Rouquerol J and Siemieniewska T. (1985) Pure Appl. Chem. 57, 603.CrossRefGoogle Scholar
  5. 5.
    Rouquerol J., Rouquerol F., Grillet Y. and Ward R.J (1988) Stud. Surf. Sci. Catal. 39, 67.CrossRefGoogle Scholar
  6. 6.
    Rouquerol F., Rouquerol J. and Sing K.S.W. (1999) Adsorption by Powders & Porous Solids, Academic Press, London.Google Scholar
  7. 7.
    Rouquerol J. (1997) In Physical Adsorption: Experiment, Theory and Applications, (Fraissard J. and Conner C.W, eds.) Kluwer, Dordrecht, p17.CrossRefGoogle Scholar
  8. 8.
    Nelson F.M. and Eggertsen F.T. (1958) Anal. Chem. 30, 1387.CrossRefGoogle Scholar
  9. 9.
    a)BAM: Bundesanstalt für Materialforschung und –prüfung, Richard-Willstätter-Str. 11, D-12489 Berlin, Germany, http://www.bam.de.
  10. b)NIST: National Institute of Standards and Technology, Gaithersburg, MD, USA, http://ts.nist.gov/ts/htdocs/230/232/232.htm
  11. c)LGC: LGC Promochem, Queens Rd, Teddington, Middlesex TW11 0LY, UK, http://www.lgcpromochem.com
  12. d)IRMM: Institute for Reference Materials and Measurements, Reference Materials Unit, attn BCR Sales, Retieseweg, B-2440 Geel, Belgium, http://www.irmm.jrc.be.
  13. 10.
    Robens E., Krebs K-F., Meyer K., Unger K.K. and Dabrowski A.(2002) Colloids Surf. A: Physicochemical and Engineering Aspects, 253.Google Scholar
  14. 11.
    Hatton T.A. (1978) Powder Technol. 19, 227.CrossRefGoogle Scholar
  15. 12.
    Harned H.S. (1920) J. Am. Chem. Soc. 42, 372.CrossRefGoogle Scholar
  16. 13.
    Lopez-Gonzales J. de D., Carpenter F.G. and Deitz V.R. (1955) J. Res. Nat. Bur. Stand. 55, 11.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • S. Lowell
    • 1
  • Joan E. Shields
    • 2
  • Martin A. Thomas
    • 1
  • Matthias Thommes
    • 1
  1. 1.Quantachrome InstrumentsBoynton BeachUSA
  2. 2.C.W. Post Campus of Long Island UniversityUSA

Personalised recommendations