Advertisement

Chemisorption: Site Specific Gas Adsorption

  • S. Lowell
  • Joan E. Shields
  • Martin A. Thomas
  • Matthias Thommes
Part of the Particle Technology Series book series (POTS, volume 16)

Abstract

When the interaction between a surface and an adsorbate is relatively weak, only physisorption takes place via dispersion and coulombic forces (see Chapter 2). However, surface atoms often possess electrons or electron pairs that are available for chemical bond formation. Resulting chemical adsorption or chemisorption has been defined by IUPAC [1] as “adsorption in which the forces involved are valence forces of the same kind as those operating in the formation of chemical compounds” and as “adsorption which results from chemical bond formation (strong interaction) between the adsorbent and the adsorbate in a monolayer on the surface” [2].

Keywords

Metal Atom Potential Energy Curve Dissociative Adsorption Porous Solid Internuclear Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Everett D.H. (1972) Pure Appl. Chem. 31, 579.CrossRefGoogle Scholar
  2. 2.
    IUPAC Compendium of Chemical Terminology 2nd Edition (1997); Pure Appl. Chem. (1990) 62, 2179.Google Scholar
  3. 3.
    Shen D., Bulow M., Siperstein F., Engelhard M. and Myers A.L. (2000) Adsorption 6, 275.CrossRefGoogle Scholar
  4. 4.
    Vattuone L., Burghaus U., Valbusa U. and Rocca M. (1998) Surf. Sci. 408, L693.CrossRefGoogle Scholar
  5. 5.
    Pettus K.A., Taylor P.R. and Kummel A.C. (2000) Faraday Discuss. 117, 321.CrossRefGoogle Scholar
  6. 6.
    Russell Jr J.N., Butler J.E., Wang G.T., Bent S.F., Hovis J.S., Hamers R.J and D’Evelyn M.P. (2001) Mat. Chem. Phys. 72, 147.CrossRefGoogle Scholar
  7. 7.
    Rocca M, Savio L and Vattuone L. (2002) Surf. Sci. 502–503, 331.Google Scholar
  8. 8.
    Burwell R.L. (1976) Pure Appl. Chem. 46, 71.CrossRefGoogle Scholar
  9. 9.
    Eichler A., Hafner J., Groß A. and Scheffler M. (1999) Phys. Rev. B 59, 297.Google Scholar
  10. 10.
    Wilke S. and M. Scheffler M. (1996) Phys. Rev. B, 53, 4926.CrossRefGoogle Scholar
  11. 11.
    Lischka M, and Groß A. (2002) Phys. Rev., B 65, 075420.Google Scholar
  12. 12.
    Kroes G-J., Gross A., Baerends E-J., Scheffler M. and McCormack D.A. (2002) Acc. Chem. Res. 35, 193.CrossRefGoogle Scholar
  13. 13.
    Hafner J. (1998) Presented at: “Fundamentals Aspects of Surface Science: Elementary Processes in Surface Reactions” ERC, June 20–25, Acquafredda di Maratea, Italy.Google Scholar
  14. 14.
    Darling G.R., Kay M. and Holloway S. (1997) Phys. Rev. Lett. 78, 1731.CrossRefGoogle Scholar
  15. 15.
    Pennemann B., Oster K. and Wandelt K. (1991) Surf. Sci. 251/252, 877.Google Scholar
  16. 16.
    Clarke L. (1937) J. Am. Chem. Soc. 59, 1389.CrossRefGoogle Scholar
  17. 17.
    Michelsen H.A., Rettner C.T. and Auerbach D.J. (1992) In Surface Reactions (R.J. Madix, ed.) Springer-Verlag, Berlin, chapter 6.Google Scholar
  18. 18.
    McCormack D.A. and Kroes G.J. (1998) Chem. Phys. Lett. 296, 515.CrossRefGoogle Scholar
  19. 19.
    Weatherbee G.D., Rankin J.L., and Bartholomew C.H. (1984) Appl. Catal. 11, 73.CrossRefGoogle Scholar
  20. 20.
    Zowtiak J.M., Weatherbee G.D. and Bartholomew C.H. (1983) J. Catal. 82, 230.CrossRefGoogle Scholar
  21. 21.
    Burwell R.L. and Taylor H.S. (1936) J. Am. Chem. Soc. 58, 1753.CrossRefGoogle Scholar
  22. 22.
    Johnson M.A., Stevanovich E.V. and Truong T.N. (1998) J. Phys. Chem., B 102, 6391.CrossRefGoogle Scholar
  23. 23.
    Johnson M.A., Stevanovich E.V., Truong T.N., Günster J. and Goodman D.W. (1999) J. Phys. Chem., B 103, 3391.CrossRefGoogle Scholar
  24. 24.
    Yeom Y.H. and Kim Y. (1996) J. Phys. Chem, 100 8373.CrossRefGoogle Scholar
  25. 25.
    Henkelman G. and Jonsson H. (2001) Phys. Rev. Lett. 86, 664.CrossRefGoogle Scholar
  26. 26.
    Wonchoba S.E. and Truhlar D.G. (1998) J. Phys. Chem., B 102, 6842.CrossRefGoogle Scholar
  27. 27.
    Gee A.T., Hayden B.E., Mormiche C., Kleyn A.W. and Riedmüller B. (2003) J. Chem. Phys. 118, 3334CrossRefGoogle Scholar
  28. 28.
    Onal I. and Senkan S. (1997) Ind. Eng. Chem. Res. 36, 4028.CrossRefGoogle Scholar
  29. 29.
    Paganini M.C., Chiesa M., Giamello E., Coluccia S., Martra G., Murphy D.M. and Pacchioni G. (1999) Surf. Sci. 421, 246.CrossRefGoogle Scholar
  30. 30.
    Cavalleri M., Pelmenschikov A.G., Morosi G., Gamba A., Coluccia S. and Martra G. (2001) Stud. Surf. Sci. Catal. 140, 131.CrossRefGoogle Scholar
  31. 31.
    Hong Z., Fogash K.B. and Dumesivc J.A. (1999) Catal. Today 51, 269.CrossRefGoogle Scholar
  32. 32.
    Gavioli L., Kimberlin K., Tringides M.C., Wendelken J.F. and Zhang Z. (1999) Phys. Rev. Lett. 82, 129.CrossRefGoogle Scholar
  33. 33.
    Legare P., Madani B., Cabeza G.F. and Castellani N.J. (200 1) Int. J. Mol. Sci. 2, 246.Google Scholar
  34. 34.
    Campbell C.T. and Starr D.E. (2002) J. Am. Chem. Soc. 124, 9212.CrossRefGoogle Scholar
  35. 35.
    Hansen K.H., Worren T., Stempel S., Lægsgaard E., Bäumer M., Freund H-J., Besenbacher F., and Stensgaard I. (1999) Phys. Rev. Lett. 83, 4120.CrossRefGoogle Scholar
  36. 36.
    Dulub A.O., Hebenstreit W. and Diebold U. (2000) Phys. Rev. Lett. 84, 3636.CrossRefGoogle Scholar
  37. 37.
    Argo A.M., Odzak J.F., Lai F.S. and Gates B.C. (2002) Nature 415, 623.CrossRefGoogle Scholar
  38. 38.
    Aizawa M., Lee S. and Anderson S.L. (2002) J. Chem. Phys. 117, 5001.CrossRefGoogle Scholar
  39. 39.
    Kim Y.D. and Goodman D.W. (2002) “Toward an understanding of catalysis by supported metal nanoclusters” Presented at International Workshop on Nanochemistry, COST D19, Sept 26–28.Google Scholar
  40. 40.
    Langmuir I. (1916) J. Am. Chem. Soc. 38, 2221.CrossRefGoogle Scholar
  41. 41.
    Langmuir I. (1917) J. Am. Chem. Soc. 39, 1848.CrossRefGoogle Scholar
  42. 42.
    Langmuir I. (1918) J. Am. Chem. Soc. 40, 1361.CrossRefGoogle Scholar
  43. 43.
    Temkin M.I. (1941) J. Phys. Chem. (USSR), 15, 296.Google Scholar
  44. 44.
    Freundlich H. (1906) Z. Phys. Chem. A, 57, 385.Google Scholar
  45. 45.
    Kissinger H.E. (1956) J. Res. Natl. Bur. Stand. 57, 217.CrossRefGoogle Scholar
  46. 46.
    Kissinger H.E. (1957) Anal. Chem. 29, 1702.CrossRefGoogle Scholar
  47. 47.
    Redhead P.A. (1962) Vacuum 12, 203.CrossRefGoogle Scholar
  48. 48.
    Coats A.W. and Redfern J.P. (1964) Nature 201, 68.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • S. Lowell
    • 1
  • Joan E. Shields
    • 2
  • Martin A. Thomas
    • 1
  • Matthias Thommes
    • 1
  1. 1.Quantachrome InstrumentsBoynton BeachUSA
  2. 2.C.W. Post Campus of Long Island UniversityUSA

Personalised recommendations