Dialysis techniques: hemoperfusion

  • James F. Winchester

Abstract

Since the early 1960s sorbents have been used in an attempt to increase the efficiency of dialysis, or replace it, in the management of uremia. Recent evidence on new sorbents for hemoperfusion suggests they will be valuable additions to hemodialysis. Additionally hemoperfusion has been used to treat drug and chemical intoxication as well as fulminant hepatic encephalopathy. Sorbent regeneration of dialysate is accepted in the clinical management of end-stage renal disease (ESRD).

Keywords

Indole Ofloxacin Amitriptyline Azithromycin Ouabain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Polaschegg HD, Ronco C, Soli M. Characterization of flowdynamic pattern in a new sorbent cartridge for combined hemoperfusion-hemodialysis. Contrib Nephrol. 2001;133: 154–65.PubMedCrossRefGoogle Scholar
  2. 2.
    Yatzidis H. A convenient haemoperfusion micro-apparatus over charcoal for the treatment of endogenous and exogenous intoxications. Its use as an artificial kidney. Proc Eur Dial Transplant Assoc. 1964;1:83.Google Scholar
  3. 3.
    Dunea G, Kolff WJ. Clinical experience with the Yatzidis charcoal artificial kidney. Trans Am Soc Arhf Intern Organs. 1965;11:178.CrossRefGoogle Scholar
  4. 4.
    Chang TMS. Semipermeable aqueous microcapsules (artificial cells): with emphasis on experiments in an extracorporeal shunt system. Trans Am Soc Artif Intern Organs. 1966;12:13.PubMedGoogle Scholar
  5. 5.
    Scorgie KA, Davies JG, Phillips GJ et al. Middle molecule adsorption from ultrafiltrate for use in intensive care medicine. ASAIO J. 2001;47:157 (abstract).CrossRefGoogle Scholar
  6. 6.
    Wójtowicz MA, Markowitz BL, Smith WW, Serio MA. Microporous carbon adsorbents for hydrogen storage. Int J Soc Mater Eng Resources. 1999;7:253–66.CrossRefGoogle Scholar
  7. 7.
    Ronco C, Brendolan A, Winchester JF et al. First clinical experience with an adjunctive hemoperfusion device designed specifically to remove B2-microglobulin in hemodialysis. Blood Purif. 2001;19:260–3.PubMedCrossRefGoogle Scholar
  8. 8.
    Asher WJ. Introduction to sorbents. In: Giordano C, editor. Sorbents and Their Clinical Applications. New York: Academic Press, 1980:3.Google Scholar
  9. 9.
    Suuberg EM, Calo JM, Wójtowicz, MA. Oxygen chemisorption as a carbon surface diagnostic technique — a review. In: McEnaney, May TJ, editors. Proc Int Conf Carbon. Bristol: IOP Publishing, 1988:319–21.Google Scholar
  10. 10.
    Winchester JF, Ronco C, Brady JA et al. The next step from high flux dialysis: application of sorbent technology. Blood Purif. 2002;20:81–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Denti E, Walker JM. Activated carbon: properties, selection and evaluation. In: Giordano C, editor. Sorbents and Their Clinical Applications. New York: Academic Press, 1980:101.Google Scholar
  12. 12.
    Denti E, Luboz MP, Tessore V. Adsorption characteristics of cellulose acetate coated charcoals. J Biomed Mater Re. 1975;9:143.CrossRefGoogle Scholar
  13. 13.
    Winchester JF, Ratcliffe JG, Carlyle E, Kennedy AC. Solute, amino acid, and hormone changes with coated charcoal hemoperfusion in uremia. Kidney Int. 1978;14:74.PubMedCrossRefGoogle Scholar
  14. 14.
    Kokot F, Pietrek J, Seredynski M. Influence of haemoperfusion on plasma levels of hormones and B-methyldigoxin. Proc Eur Dial Transplant Assoc. 1978;15:604.PubMedGoogle Scholar
  15. 15.
    Cornelis R, Ringoir S, Mees L, Hoste J. Behavior of trace metals during hemoperfusion. Miner Electrolyte Metab. 1980;4:123.Google Scholar
  16. 16.
    Davankov V, Pavlova L, Tsyurupa M, Brady J, Balsamo M, Yousha E. Polymeric adsorbent for removing toxic proteins from blood of patients with kidney failure. J Chromatogr B Biomed Sci Appl. 2000;28:73–80.CrossRefGoogle Scholar
  17. 17.
    Furuyoshi S, Nakatani M, Taman J, Kutsuki H, Takata S, Tani N. New adsorption column (Lixelle) to eliminate B-2 microglobulin for direct hemoperfusion. Ther Apheresis. 1998;2:13–17.CrossRefGoogle Scholar
  18. 18.
    Homma N, Gejyo F, Hasegawa S et al. Effects of a new adsorbent column for removing beta-2-microglobulin from circulating blood of dialysis patients. In: Maeda K, Shinzato T, editors. Dialysis-Related Amyloidosis. Contributions to Nephrology, 1995;112:164–71.Google Scholar
  19. 19.
    Murphy M, Hennebelle B, Lloyd B, Davies AW, Mikhalovsky S. The use of adsorbents in the removal of cytokines. ASAIO J. 2001:47:173 (abstract).CrossRefGoogle Scholar
  20. 20.
    Ameer GA, Grovender EA, Ploegh H et al. A novel immunoadsorption device for removing beta2-microglobulin from whole blood. Kidney Int. 2001;59:1544–50.PubMedCrossRefGoogle Scholar
  21. 21.
    Chang TMS. Microcapsule artificial kidney in replacement of renal function. With emphasis on adsorbent hemoperfusion. In: Drukker W, Parsons FM, Maher JF, editors. Replacement of Renal Function by Dialysis, 1st edn. The Hague: Martinus Nijhoff, 1978:217.Google Scholar
  22. 22.
    Chenoweth DE, Henderson LW. Complement activation during hemodialysis: laboratory evaluation of hemodialyzers. Artif Organs. 1987;11:155–62.PubMedCrossRefGoogle Scholar
  23. 23.
    Craddock PR, Fehr J, Brigham KL, Kronenherg R, Jacobs HS. Complement and leukocyte-mediated pulmonary dysfunction in hemodialysis. N Eng! J Med 1977; 296:769.CrossRefGoogle Scholar
  24. 24.
    Winchester JF. Hemoperfusion. In: Maher JF, editor. Replacement of Renal Function by Dialysis, 3rd edn. Dordrecht: Kluwer, 1988:439–59.Google Scholar
  25. 25.
    Pott G, Voss B, Lohmann J, Zundorf P. Loss of fibronectin in plasma of patients with shock and septicaemia and after haemoperfusion in patients with severe poisoning. J Clin Chem Clin Biochem. 1982;20:333.PubMedGoogle Scholar
  26. 26.
    Winchester JF. Hemoperfusion in uremia. In: Giordano C, editor. Sorbents and Their Clinical Applications. New York: Academic Press, 1980:38.Google Scholar
  27. 27.
    Randerson DH, Gurland HJ, Schmidt B et al. Sorbent membrane dialysis in uremia. Contrib Nephrol. 1982;29: 53–64.PubMedGoogle Scholar
  28. 28.
    Portnoy O, Zosin V. Evaluation of efficiency of carbon fibrous haemosorbents. Biomater Artif Cells Artif Organs. 1987;15:585–94.PubMedGoogle Scholar
  29. 29.
    Stefoni S, Feliciangeli G, Cianciolo G, De Sanctis LB, Giardino R, Spighi M. Hemoperfusion in chronic uremia. Boll Soc Ital Biol Sper. 1993;69:675–82.PubMedGoogle Scholar
  30. 30.
    Muirhead EE, Reid AF. Resin artificial kidney. J Lab Clin Med. 1948;33:841.PubMedGoogle Scholar
  31. 31.
    Chang TMS, Gonda A, Dirks JH, Malave N. Clinical evaluation of chronic intermittent and short term hemoperfusion in patients with chronic renal failure using semipermeable microcapsules (artificial cells) formed from membrane coated activated charcoal. Trans Am Soc Artif Intern Organs. 1971;17:246.PubMedGoogle Scholar
  32. 32.
    Chang TMS, Migchelsen M. Characterization of possible toxic metabolites in uremia and hepatic coma based on the clearance spectrum for larger molecules by the ACAC microcapsule artificial kidney. Trans Am Soc Artif Intern Organs. 1973;19:314.PubMedCrossRefGoogle Scholar
  33. 33.
    Chang TMS, Migchelsen M, Coffey JF, Stark R. Serum middle molecule levels in uremia during long term intermittent hemoperfusion with ACAD (coated charcoal) microcapsule artificial kidney. Trans Am Soc Artif Intern Organs. 1974;20:364.Google Scholar
  34. 34.
    Oules R, Asaba H, Neuhauser M et al. Removal of uremic small and middle molecules and free amino acids by carbon hemoperfusion. Trans Am Soc Artif Intern Organs. 1977;23:583.PubMedCrossRefGoogle Scholar
  35. 35.
    Chang TMS. Assessment of clinical trials of charcoal hemoperfusion in uremic patients. Clin Nephrol. 1979; 11:111.PubMedGoogle Scholar
  36. 36.
    Stefoni S, Coli L. Feliciangeli G, Baldrati L, Bonomini V. Regular hemoperfusion in regular dialysis treatment. A longterm study. Int J Artif Organs. 1980;3:348.PubMedGoogle Scholar
  37. 37.
    Rosenbaum JL, Kramer MS, Raja R, Henriques M. Hemoperfusion in uremia: effect of time, solute competition and biocompatibility on column adsorption. In: Sideman S, Chang TMS, editors. Hemoperfusion, Kidney and Liver Support and Detoxification. Washington, DC: Hemisphere, 1980:245.Google Scholar
  38. 38.
    Gelfand MC, Winchester JF. Hemoperfusion results in uremia. Clin Nephrol. 1979;11;52–5.Google Scholar
  39. 39.
    Trznadel K, Walasek L, Kidawa Z, Lutz W. Comparative studies on the effect of hemoperfusion and hemodialysis on the elimination of some uremic toxins. Clin Nephrol. 1978;10:229.PubMedGoogle Scholar
  40. 40.
    Stefoni S, Feliciangeli G, Coli L, Bonomini V. Evaluation of a new coated charcoal for hemoperfusion in uremia. Int J Artif Organs. 1979;2:320.PubMedGoogle Scholar
  41. 41.
    Martin AM, Gibbins JK, Kimmitt J, Rennie F. Hemodialysis and hemoperfusion in the treatment of uremic pericarditis. A study of 13 cases. Dial Transplant. 1979; 8:135.Google Scholar
  42. 42.
    Odaka M, Kirasawa H, Kobayashi H et al. Clinical and fundamental studies of cellulose coated bead-shaped charcoal haemoperfusion in chronic renal failure. In: Sideman S, Chang TMS, editors. Hemoperfusion, Kidney and Liver Support and Detoxification. Washington, DC: Hemisphere, 1980:45.Google Scholar
  43. 43.
    Trznadel K, Luciak M, Wyszogrodzka M. Effect of haemoperfusion on the left ventricular systolic function in patients with chronic uraemia. Acta Med Pol. 1981;22:75.PubMedGoogle Scholar
  44. 44.
    Otsubo O, Kuzuhara K, Simada Y et al. Treatment of uraemic peripheral neuritis by direct haemoperfusion with activated charcoal. Proc Eur Dial Transplant Assoc. 1979; 16:731.PubMedGoogle Scholar
  45. 45.
    Agishi T, Yamashita N, Ota K. Clinical results of direct charcoal hemoperfusion for endogenous and exogenous intoxication. In: Sideman S, Chang TMS, editors. Hemoperfusion, Kidney and Liver Support and Detoxification. Washington, DC: Hemisphere, 1980:255.Google Scholar
  46. 46.
    Barre PE, Gonda A, Chang TMS. Routine clinical applications of hemodialysis–hemoperfusion in chronic renal failure: case reports. Int J Artif Organs. 1986;9:305.PubMedGoogle Scholar
  47. 47.
    Chang TMS, Barre P, Kuruvilla S. Long-term reduced time hemoperfusion-hemodialysis compared to standard dialysis. A preliminary crossover analysis. Trans Am Soc Artif Intern Organs. 1985;31:572.PubMedGoogle Scholar
  48. 48.
    Henderson IS, Kennedy AC. Long-term evaluation of charcoal haemoperfusion combined with dialysis for uraemic patients. In: Paul JP, Gaylor JDS, Courtney JM, Gilchrist T, editors. Biomaterials in Artificial Organs. London: Macmillan, 1984:72.Google Scholar
  49. 49.
    Odaka M, Tabata Y, Kabayashi H et al. Clinical experience of bead-shaped charcoal hemoperfusion in chronic renal failure and fulminant hepatic failure. In: Chang TMS, editor. Artifcial Kidney, Artificial Liver and Artificial Cells. New York: Plenum, 1978:79.CrossRefGoogle Scholar
  50. 50.
    Bonomini V, Stefoni S, Feliciangeli G et al. Shortened treatment time by combined hemodialysis and hemoperfusion. Contrib Nephrol. 1985;44:57.PubMedGoogle Scholar
  51. 51.
    Litovitz TL, Klein-Schwartz W, White S et al. 1999 annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med. 2000;18:517–74.PubMedCrossRefGoogle Scholar
  52. 52.
    Winchester JF. Management of iron overload. Semin Nephrol. 1986;4(Suppl. 1):22.Google Scholar
  53. 53.
    Chang TMS, Barre P. Effect of desferrioxamine on removal of aluminum and iron by coated charcoal haemoperfusion and haemodialysis. Lancet. 1983;2:1051.PubMedCrossRefGoogle Scholar
  54. 54.
    Margel S. A novel approach for heavy metal poisoning treatment, a model. Mercury poisoning by means of chelating microspheres; hemoperfusion and oral administration. J Med Chem. 1981;24:1263–6.PubMedCrossRefGoogle Scholar
  55. 55.
    De Groot G, van Heijst AN, van Kesteren RG, Maes RA. An evaluation of the efficacy of charcoal haemoperfusion in the treatment of three cases of acute thallium poisoning. Arch Toxicol. 1985;57:61.PubMedCrossRefGoogle Scholar
  56. 56.
    Arnold AP, Canty AJ, Moors PW, Deacon GB. Chelation therapy for methylmercury(II) poisoning. Synthesis and determination of solubility properties of MeHg(II) complexes of thiol and dithiol antidotes. J Inorg Biochem. 1983;19:319–27.PubMedCrossRefGoogle Scholar
  57. 57.
    Ash SR, Carr DJ, Blake DE et al. Effect of sorbent-based dialytic therapy with the Biologic-DT on an experimental model of hepatic failure. Trans Am Soc Artif Intern Organs. 1993;39:M675.CrossRefGoogle Scholar
  58. 58.
    Asbach HW, Holz F, Mohring K, Schuler HW. Lipid hemodialysis versus charcoal hemoperfusion in imipramine poisoning. Clin Toxicol. 1977;11:211–19.PubMedCrossRefGoogle Scholar
  59. 59.
    Henderson LW, Silverstein MAE, Ford CA, Lysaght MJ. Clinical response to maintenance hemodiafiltration. Kidney Int. 1975;7:S52.Google Scholar
  60. 60.
    Kaplan AA. Continuous arteriovenous hemofiltration and related therapies. In: Jacobs C, Kjellstrand CM, Koch KM, Winchester JF, editors. Replacement of Renal Function by Dialysis, 4th edn. Dordrecht: Kluwer, 1996:390.CrossRefGoogle Scholar
  61. 61.
    Palmer BF. Effectiveness of hemodialysis in the extracorporeal therapy of phenobarbital overdose. Am J Kidney Dis. 2000;36:640–3.PubMedCrossRefGoogle Scholar
  62. 62.
    Maher JF. Principles of dialysis and dialysis of drugs. Am J Med 1977;62:475.PubMedCrossRefGoogle Scholar
  63. 63.
    Blagg CR, Vizzo JE, Jensen WB, Cole JJ. Experience with a sorbent-based dialysate regeneration system for hemodialysis. Prog Biochem Pharmacol. 1974;9:239–48.PubMedGoogle Scholar
  64. 64.
    Muirhead EE, Reid AF. Resin artificial kidney. Lab Clin Med. 1948;33:841.Google Scholar
  65. 65.
    Schreiner GE. The role of hemodialysis (artificial kidney) in acute poisoning. Arch Intern Med. 1958;102:896.CrossRefGoogle Scholar
  66. 66.
    Yatzidis IT, Voudiclari S, Oreopoulos D et al. Treatment of severe barbiturate poisoning. Lancet. 1965;2:216.CrossRefGoogle Scholar
  67. 67.
    Chang TMS. Artificial Cells. Springfield, IL: Charles C Thomas, 1972.Google Scholar
  68. 68.
    Hampel G, Crome P, Widdop B, Goulding R. Experience with fixed-bed charcoal haemoperfusion in the treatment of severe drug intoxication. Arch Toxicol. 1980;45:133.PubMedCrossRefGoogle Scholar
  69. 69.
    Gelfand MC, Winchester JF, Knepshield JH et al. Charcoal hemoperfusion in severe drug overdosage. Trans Am Soc Artif Intern Organs. 1977;23:599.PubMedCrossRefGoogle Scholar
  70. 70.
    Verpooten GA, De Broe ME. Combined hemoperfusionhemodialysis in severe poisoning: kinetics of drug extraction. Resuscitation. 1984;11:275.PubMedCrossRefGoogle Scholar
  71. 71.
    Terman DS, Buffaloe G, Mattioli C et al. Extracorporeal immunoabsorption: initial experience in human systemic lupus erythematosus. Lancet. 1979;2:824.PubMedCrossRefGoogle Scholar
  72. 72.
    Hakim, RM, Milford E, Himmelfarb J et al. Extracorporeal removal of anti-HLA antibodies in transplant candidates. Am J Kidney Dis. 1990:16:423–31.PubMedGoogle Scholar
  73. 73.
    Hanasawa K, Tani T, Oka T et al. A new treatment for endotoxemia with direct hemoperfusion by polymyxin immobilized fiber. Ther Apher. 2000;4:142–5.PubMedCrossRefGoogle Scholar
  74. 74.
    Savin H, Marcus L, Margel S et al. Treatment of adverse digitalis effects by hemoperfusion through columns containing antidigoxin antibodies bound to agarose polyacrolein microsphere beads. Am Heart J. 1987;113:1078.PubMedCrossRefGoogle Scholar
  75. 75.
    Denti E, Luboz MP, Tessore V. Adsorption characteristics of celulose acetate coated charcoals. J Biomed Mater Res. 1975;9:143.PubMedCrossRefGoogle Scholar
  76. 76.
    Hadden J, Johnson K, Smith S, Price L, Giardana E. Acute barbiturate intoxication: concepts in management. J Am Med Assoc. 1969;209:893.CrossRefGoogle Scholar
  77. 77.
    Winchester JF, Gelfand MC, Tilstone WJ. Hemoperfusion in drug intoxication: clinical and laboratory aspects. Drug Metab Rev. 1978;8:69.PubMedCrossRefGoogle Scholar
  78. 78.
    Maher JF, Schreiner GE. The dialysis of poison and drugs. Trans Am Soc Artif Intern Organs. 1967;13:369.Google Scholar
  79. 79.
    Martiny SS, Phelps Sj, Massey KL. Treatment of severe digitalis intoxication with digoxin-specific antibody fragments: a clinical review. Crit Care Med. 1988;16:629.PubMedCrossRefGoogle Scholar
  80. 80.
    Ujhelyi MR, Robert S, Cummings DM et al. Disposition of digoxin immune Fab in patients with kidney failure. Clin Pharmacol Ther. 1993;54:388–94.PubMedCrossRefGoogle Scholar
  81. 81.
    Maeda I, Ku Y, Tominaga M et al. Pharmacokinetic evaluation of complete infrarenal inferior vena caval isolation and charcoal hemoperfusion for intra-arterial chemotherapy of pelvic tumors. Gan To Kagaku Ryoho. 1995;22: 1563–5.PubMedGoogle Scholar
  82. 82.
    Oldfield EH, Clark WC, Dedrick RL et al. Reduced systemic drug exposure by combining intraarterial cis-diamminedichloroplatinum(n) with hemodialysis of regional venous drainage. Cancer Res. 1987;1:1962–7.Google Scholar
  83. 83.
    Oldfield EH, Dedrick RL, Yeager RL et al. Reduced systemic drug exposure by combining intra-arterial chemotherapy with hemoperfusion of regional venous drainage. J Neurosurg. 1985;63:726–32.PubMedCrossRefGoogle Scholar
  84. 84.
    Gurland HJ, Samtleben W, Lysaght MJ, Winchester JF. Extracorporeal blood purification techniques: plasmapheresis and hemoperfusion. In: Jacobs C, Kjellstrand CM, Koch KM, Winchester JF, editors. Replacement of Renal Function by Dialysis, 4th edn. Dordrecht: Kluwer, 1996:472.CrossRefGoogle Scholar
  85. 85.
    Derzsiova K, Mydlik M, Petrikova V. Hemoperfusion study with carbamazepine in vitro. Int J Artif Organs. 1999;22: 730–3.PubMedGoogle Scholar
  86. 86.
    James TH, Ziparo V, Jeppsson B, Fischer JE. Hyperammonaemia, plasma aminoacid imbalance, and bloodbrain aminoacid transport: a unified theory of portal-systemic encephalopathy. Lancet. 1979;2:772.PubMedCrossRefGoogle Scholar
  87. 87.
    Schafer DF, Jones EA. Hepatic encephalopathy and the gamma-aminobutyric-acid neurotransmitter system. Lancet. 1982;1:18.PubMedCrossRefGoogle Scholar
  88. 88.
    Anderson C, Thabrew MI, Hughes RD. Assay to detect inhibitory substances in serum of patients with acute liver failure. Int J Artif Organs. 1999;22:113–17.PubMedGoogle Scholar
  89. 89.
    Basile AS, Saito K, al-Mardini H et al. The relationship between plasma and brain quinolinic acid levels and the severity of hepatic encephalopathy. Gastroenterology. 1995;108:818–23.PubMedCrossRefGoogle Scholar
  90. 90.
    Basile AS, Hughes RD, Harrison PM et al. Elevated brain concentrations of 1,4-benzodiazepines in fulminant hepatic failure. N Engl J Med. 1991;325:509–11.CrossRefGoogle Scholar
  91. 91.
    Nagaki M, Iwai H, Naiki T, Ohnishi H, Muto Y, Moriwaki H. High levels of serum interleukin-10 and tumor necrosis factor-alpha are associated with fatality in fulminant hepatitis. J Infect Dis. 2000;182:1103–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Chang TMS. Haemoperfusion over microencapsulated adsorbent in a patient with hepatic coma. Lancet. 1972; 2:1371.PubMedCrossRefGoogle Scholar
  93. 93.
    Chang TMS. Hemoperfusion alone and in series with ultrafiltration or dialysis for uremia, poisoning and liver failure. Kidney Int. 1976;10(Suppl. 7):S305.Google Scholar
  94. 94.
    Colon AR, Gelfand MC, Winchester JF. Hemocarboperfusion (HCP) in hepatic decompensation and cerebral edema. In: Crocker JFS, editor. Reye’s Syndrome. New York: Grune & Stratton, 1978:139.Google Scholar
  95. 95.
    Gazzard BG, Portmann BA, Weston MJ et al. Charcoal haemoperfusion in the treatment of fulminant hepatic failure. Lancet. 1974;1:1301.PubMedCrossRefGoogle Scholar
  96. 96.
    Silk DBA, Williams R. Experiences in the treatment of fulminant hepatic failure by conservative therapy, charcoal haemoperfusion and polyacrylonitrile haemodialysis. Int J Artif Organs. 1978;1:29.PubMedGoogle Scholar
  97. 97.
    Chang TMS, Lister C, Chirito E, O’Keefe P, Resurreccion E. Effects of hemoperfusion rate and time of initiation of ACAC charcoal hemoperfusion on the survival of fulminant hepatic failure rats. Trans Am Soc Artif Intern Organs. 1978;24:243.PubMedGoogle Scholar
  98. 98.
    Gimson AES, Braude S, Mellon PJ, Canalese J, Williams R. Earlier charcoal haemoperfusion in fulminant hepatic failure. Lancet. 1982;2:681.PubMedCrossRefGoogle Scholar
  99. 99.
    Berk PD. A computer simulation study relating to the treatment of fulminant hepatic failure by hemoperfusion. Proc Soc Exp Biol Med. 1977;155:535.PubMedGoogle Scholar
  100. 100.
    Hughes RD, Cochrane AMD, Thomson AD, Murray-Lyon, Williams R. Cytotoxicity of plasma from patients with acute hepatic failure to isolated rabbit hepatocytes. Br J Exp Pathol. 1976;57:348.PubMedGoogle Scholar
  101. 101.
    Gelfand MC, Winchester JF, Knepshield JH, Cohan SL, Schreiner GE. Reversal of hepatic coma by coated charcoal hemoperfusion: clinical and biochemical observations. ASAIO J. 1978;1:73.Google Scholar
  102. 102.
    Amano I, Kano H, Takahira H et al. Hepatic assist system using bead type charcoal. In: Chang TMS, editor. Artificial Kidney Artificial Liver and Artificial Cells. New York: Plenum, 1978:89.CrossRefGoogle Scholar
  103. 103.
    Odaka M, Tabata Y, Kabayashi H et al. Clinical experience of bead-shaped charcoal hemoperfusion in chronic renal failure and fulminant hepatic failure. In: Chang TMS, editor. Artificial Kidney, Artificial Liver and Artificial Cells. New York: Plenum, 1978:79.CrossRefGoogle Scholar
  104. 104.
    Seda HWM, Hughes RD, Give CD, Williams R. Removal of inhibitors of brain Na-K+ ATPase by haemoperfusion in fulminant hepatic failure. Artif Organs. 1984;8:174.PubMedCrossRefGoogle Scholar
  105. 105.
    Foster D, Ahmed K, Zieve L. Action of methanethiol on membrane Na+K+ ATPase: implications for hepatic coma. Ann NY Acad Sci. 1974;242:573.PubMedCrossRefGoogle Scholar
  106. 106.
    Seda HWM, Hughes RD, Give CD, Williams R. Inhibition of rat brain Na+K+ ATPase activity by serum from patients with fulminant hepatic failure. Hepatology. 1984;4:74.PubMedCrossRefGoogle Scholar
  107. 107.
    Langley PG, Hughes RD, Ton HY, Silk DBA, Williams R. The effect of prostaglandin E, and adenosine on adverse platelet reactions during charcoal haemoperfusion. Thromb Res. 1978;13:351.PubMedCrossRefGoogle Scholar
  108. 108.
    Rubin MH, Weston MJ, Bullock G et al. Abnormal platelet function and ultrastructure in fulminant hepatic failure. Q J Med. 1977;46:339.PubMedGoogle Scholar
  109. 109.
    Sette H, Hughes RD, Langley PG, Gimson AE, Williams R. Heparin response and clearance in acute and chronic liver disease. Thromb Haemostas. 1985;54:591.Google Scholar
  110. 110.
    Cordopatri F, Boncinelli S, Marsili M et al. Effects of charcoal haemoperfusion with prostacyclin on the coagulation-fibrinolysis system and platelets of patients with fulminant hepatic failure — preliminary observation. Int J Artif Organs. 1982;5:243.PubMedGoogle Scholar
  111. 111.
    Kennedy HJ, Greaves M, Triger DR. Clinical experience with the use of charcoal haemoperfusion: is prostacyclin required? Life Support Systems. 1985;3:115.PubMedGoogle Scholar
  112. 112.
    Bihari D, Hughes RD, Gimson AES et al. Effects of serial resin haemoperfusion in fulminant hepatic failure. Int J Artif Organs. 1983;6:299.PubMedGoogle Scholar
  113. 113.
    Maini R, Gaylor JDS, Courtney JM, Wozniak A. Removal of protein-bound bilirubin from plasma using small particle size anion exchange resin and microfiltration. In: Paul JP, Gaylor JDS, Courtney JM, Gilchrist T, editors. Biomaterials in Artificial Organs. London: Macmillan, 1984:186.Google Scholar
  114. 114.
    Mitzner SR, Klammt S, Peszynski P et al. Improvement of multiple organ functions in hepatorenal syndrome during albumin dialysis with the molecular adsorbent recirculating system. Ther Apher. 2001;5:417–22.PubMedCrossRefGoogle Scholar
  115. 115.
    Hughes R, Williams R. Clinical experience with charcoal and resin hemoperfusion. Semin Liver Dis, 1986;6:164.PubMedCrossRefGoogle Scholar
  116. 116.
    O’Grady JG, Gimson AE, O’Brien CJ, Pucknell A, Hughes RD, Williams R. Controlled trials of charcoal hemoperfusion and prognostic factors in fulminant hepatic failure. Gastroenterology. 1988;94:1186–92.PubMedGoogle Scholar
  117. 117.
    Hughes RD, Nagaki M, Keane H, Sheron N, Williams R. Artificial liver support in acute liver failure: a review of studies at King’s. Artif Organs. 1992;16:167–70.PubMedCrossRefGoogle Scholar
  118. 118.
    Abouna GM, Ganguly PK, Hamdy HM et al. Extracorporeal liver perfusion system for successful hepatic support pending liver regeneration or liver transplantation: a pre-clinical controlled trial. Transplantation. 1999;67:1576–83.PubMedCrossRefGoogle Scholar
  119. 119.
    Werner A, Duvar S, Muthing J et al. Cultivation and characterization of a new immortalized human hepatocyte cell line, HepZ, for use in an artificial liver support system. J Ann NY Acad Sci. 1999;875:364–8.CrossRefGoogle Scholar
  120. 120.
    Selden C, Shariat A, McCloskey P et al. Three-dimensional in vitro cell culture leads to a marked upregulation of cell function in human hepatocyte cell lines — an important tool for the development of a bioartificial liver machine. Ann NY Acad Sci. 1999;875:353–63.PubMedCrossRefGoogle Scholar
  121. 121.
    Busse B, Gerlach JC. Bioreactors for hybrid liver support: historical aspects and novel designs. Ann NY Acad Sci. 1999;875:326–39.PubMedCrossRefGoogle Scholar
  122. 122.
    Patzer JF 2nd, Mazariegos GV, Lopez R et al. Novel bioartificial liver support system: preclinical evaluation. Ann NY Acad Sci. 1999;875:340–52.PubMedCrossRefGoogle Scholar
  123. 123.
    McLaughlin BE, Tosone CM, Custer LM, Mullon C. Overview of extracorporeal liver support systems and clinical results. Ann NY Acad Sci. 1999;875:310–25.PubMedCrossRefGoogle Scholar
  124. 124.
    Hughes RD, Nicolaou N, Langley PG, Ellis AJ, Wendon JA, Williams R. Plasma cytokine levels and coagulation and complement activation during use of the extracorporeal liver assist device in acute liver failure. Artif Organs. 1998;22: 854–8.PubMedCrossRefGoogle Scholar
  125. 125.
    Miwa Y, Ellis AJ, Hughes RD, Langley PG, Wendon JA, Williams R. Effect of ELAD liver support on plasma HGF and TGF-beta 1 in acute liver failure. Int J Artif Organs. 1996;19:240–4.PubMedGoogle Scholar
  126. 126.
    Ash SR, Steczko J, Knab WR et al. Push-pull sorbentbased pheresis and hemodiabsorption in the treatment of hepatic failure: preliminary results of a clinical trial with the BioLogic-DTPF system. Ther Apher. 2000;4:218–28.PubMedCrossRefGoogle Scholar
  127. 127.
    Winchester JF, Ronco C, Brady JA et al. History of Sorbents in Uremia. In: Ronco C, Winchester JF, editors. Dialysis, Dialyzers and Sorbents. Where are we going? Contributions to Nephrology. Basel: Karger, 2001;133:131–9.CrossRefGoogle Scholar
  128. 128.
    Dhondt A, Vanholder R, Van Biesen W, Lameire N. The removal of uremic toxins. Kidney Int. 2000;58(Suppl. 76): S47–59.CrossRefGoogle Scholar
  129. 129.
    Winchester JF, Ronco C, Brady JA et al. Rationale for combined hemoperfusion/hemodialysis in uremia. In: Ronco C, Winchester JF, editors. Dialysis, Dialyzers and Sorbents. Where are we going? Contributions to Nephrology. Basel: Karger, 2001;133:174–80.CrossRefGoogle Scholar
  130. 130.
    Kazama JJ, Maruyama H, Gejyo F. Reduction in circulating 32-microglobulin level for the treatment of dialysis-related amyloidosis. Nephrol Dial Transplant. 2001;16(Suppl. 4):31–5.PubMedCrossRefGoogle Scholar
  131. 131.
    Chang TMS, Chirito E, Barre P, Cole C, Hewish M. Clinical performance — characteristics of a new combined system for simultaneous hemoperfusion-hemodialysis-ultrafiltration in series. Trans Am Soc Artif Intern Organs. 1975; 21:502.PubMedGoogle Scholar
  132. 132.
    Bonomini V, Stefoni S, Feliciangeli G et al. Shortened treatment time by combined hemodialysis and hemoperfusion. Contrib Nephrol. 1985;44:57.PubMedGoogle Scholar
  133. 133.
    Henderson IS, Kennedy AC. Long-term evaluation of charcoal haemoperfusion combined with dialysis for uraemic patients. In: Paul JP, Gaylor JDS, Courtney JM, Gilchrist T, editors. Biomaterials in Artificial Organs. London: Macmillan, 1984:72.Google Scholar
  134. 134.
    Winchester JF, Salsberg JA. Updated table: poisons removed with dialysis and hemoperfusion. http://www.arrtjournal.org
  135. 135.
    Bartels O. Haemoperfusion through activated carbon adsorbents in liver failure and hepatic coma. Acta Hepatogastroenterol (Stuttg). 1978;25:324–9.Google Scholar
  136. 136.
    Gimson AES, Langley PG, Hughes RD et al. Prostaclyclin to prevent platelet activation during charcoal haemoperfusion in fulminant hepatic failure. Lancet. 1980;1:173.PubMedCrossRefGoogle Scholar
  137. 137.
    Winchester JF, Ronco C, Salsberg J et al. Sobent augmented dialysis systems. In: Ronco C, LaGreca G, editors. Contrib Nephrol. 2002;137:181–8.Google Scholar
  138. 138.
    Winchester JF, Silberzweig J, Ronco C et al. Sorbents in acute renal failure and end stage renal disease: middle molecule and cytokine removal. Blood Purif. 2004;22:73–7.PubMedCrossRefGoogle Scholar
  139. 139.
    Morena MD, Guo D, Balakrishnan VS et al. Effect of a novel adsorbent on cytokine responsiveness to uremic plasma. Kidney Int. 2003;63:1150–4.PubMedCrossRefGoogle Scholar
  140. 140.
    Kellum JA, Song M, Venkataraman R. Hemoadsorption removes tumor necrosis factor, interleukin-6, and interleukin-10, reduces nuclear factor-kappaB DNA binding, and improves short-term survival in lethal endotoxemia. Crit Care Med. 2004;32:801–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • James F. Winchester

There are no affiliations available

Personalised recommendations