Solutions for peritoneal dialysis

  • Mariano Feriani
  • Claudio Ronco
  • Giuseppe La Greca

Abstract

Solute removal in peritoneal dialysis (PD) is achieved both by diffusion and convection. The first mechanism takes place because of the concentration gradient between the blood of the peritoneal capillary and the peritoneal dialysis solution infused in the abdomen. The solution infused in the peritoneal cavity tends to equilibrate with plasma water over time and it is removed at the end of one exchange after partial or complete equilibration. The composition of the dialysis solution permits one to remove, balance or even infuse solutes from and into the patient. The electrochemical concentration gradient is the driving force that allows such a passive diffusion (1).

Keywords

Permeability Convection Urea Creatinine Pyruvate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boen ST. Kinetics of peritoneal dialysis. Medicine. 1961; 40:243–87.Google Scholar
  2. 2.
    Henderson LW. Peritoneal ultrafiltration dialysis. Enhanced urea transfer using hypertonic peritoneal dialysis fluid. J Clin Invest. 1966;45:950–5.PubMedGoogle Scholar
  3. 3.
    Nolph KD, Miller FN, Pyle WK, Popovich RP, Sorkin MI. An hypothesis to explain the ultrafiltration characteristics of peritoneal dialysis. Kidney Int. 1981;20:543–8.PubMedGoogle Scholar
  4. 4.
    Ronco C, Feriani M, Chiaramonte S et al. Pathophysiology of ultrafiltration in peritoneal dialysis. Pert Dial Int. 1990; 10:119–27.Google Scholar
  5. 5.
    Boen ST. History of peritoneal dialysis. In: Nolph KD, editor. Peritoneal Dialysis. Dordrecht: Kluwer, 1989:1–12.Google Scholar
  6. 6.
    Dobbie JW. Pathogenesis of peritoneal fibrosis syndromes (sclerosing peritonitis) in peritoneal dialysis. Pert Dial Int. 1992;12:14–22.Google Scholar
  7. 7.
    Di Paolo N, Sacchi G, De Mia M. Morphology of the peritoneal membrane during continuous ambulatory peritoneal dialysis. Proc EDTA. 1981;18:199–207.Google Scholar
  8. 8.
    Feriani M, Biasioli S, Borin D, Fabris A, Ronco C, La Greca G. Bicarbonate solutions for peritoneal dialysis: a reality. Int J Artif Organs. 1985;8:57–63.PubMedGoogle Scholar
  9. 9.
    Winchester JF, Stegink LD, Ahmad S et al. A comparison of glucose polymer and dextrose as osmotic agents in CAPD. In: Maher JF, Winchester JF, editors. Frontiers in Peritoneal Dialysis. New York: Field, Rich and Associates, 1986: 231–40.Google Scholar
  10. 10.
    Jorres A, Gahl GM, Ludat K, Passlick-Deetjen J. CAPD dialysate inhibit cytokine production in PBMC activated with Staph epidermidis (S. epi): partial restoration by alternative PD fluids. Perit Dial Int. 1993;13(Suppl. 1):S56–63.Google Scholar
  11. 11.
    Wieslander A, Linden T. Glucose degradation and cytotoxicity in PD fluids. Pert Dial Int. 1996;16(Suppl. 1):S114–18.Google Scholar
  12. 12.
    Feriani M, Catizone L, Fracasso A. Peritoneal dialysis solutions and systems. In: Gokal R, Khanna R, Krediet R, Nolph K, editors. Textbook of Peritoneal Dialysis, 2nd edn. Dordrecht: Kluwer, 2000:253–305.Google Scholar
  13. 13.
    Merrill JP, Hampers CL. Uremia. N Engl J Med. 1970;282: 953–60.PubMedGoogle Scholar
  14. 14.
    Lowrie EG, Steinberg SM, Galen MA et al. Factors in the dialysis regimen which contribute to alterations in the abnormalities of uremia. Kidney Int. 1976;10:409–17.PubMedGoogle Scholar
  15. 15.
    Teschan PE. Electroencephalographic and other neurophy siological abnormalities in uremia. Kidney Int. 1975;7 (Suppl. 2):S210–18.Google Scholar
  16. 16.
    Nolph KD, Parker A. The composition of dialysis solution for continuous ambulatory peritoneal dialysis. In: Legrain M, editor. Continuous Ambulatory Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1980:341–6.Google Scholar
  17. 17.
    Nolph KD, Twardowski ZJ, Popovich RP, Rubin J. Equilibration of peritoneal dialysis solutions during long dwell exchanges. J Lab Clin Med. 1979;93:246–56.PubMedGoogle Scholar
  18. 18.
    Nolph KD, Sorkin MJ, Moore H. Autoregulation of sodium and potassium removal during continuous ambulatory peritoneal dialysis. Trans ASAIO. 1980;26:334–7.Google Scholar
  19. 19.
    Nolph KD, Hano JE, Teschan PE. Peritoneal sodium transport during hypertonic peritoneal dialysis: physiologic mechanisms and clinical implications. Ann Intern Med. 1969;70:931–41.PubMedGoogle Scholar
  20. 20.
    Raja RM, Cantor RE, Boreyco C, Bushchri H, Kramer MS, Rosenbaum JL. Sodium transport during ultrafiltration peritoneal dialysis. Trans ASAIO. 1972;18:429–35.Google Scholar
  21. 21.
    Raja RM, Kramer MS, Rosenbaum JL, Manchanda R, Lazaro N. Evaluation of hypertonic peritoneal dialysis solutions with low sodium. Nephron. 1973;11:342–53.PubMedGoogle Scholar
  22. 22.
    Ahearn DJ, Nolph KD. Controlled sodium removal with peritoneal dialysis. Trans ASAIO. 1972;18:423–28.Google Scholar
  23. 23.
    Bosch JP. Permeability characteristics of the peritoneal membrane. In: La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco C, editors. Peritoneal Dialysis. Milan: Wichtig Editore, 1985:25–32.Google Scholar
  24. 24.
    Rippe B, Stein G, Haraldsson B. Computer simulations of peritoneal fluid transport in CAPD. Kidney Int. 1991; 40:315–25.PubMedGoogle Scholar
  25. 25.
    Monquil MCJ, Imholz ALT, Struijk DG, Krediet RT. Does impaired transcellular water transport contribute to net ultrafiltration failure during CAPD? Pert Dial Int. 1995; 15:42–8.Google Scholar
  26. 26.
    Krediet RT. The physiology of peritoneal solute transport and ultrafiltration. In: Gokal R, Khanna R, Krediet R, Nolph K, editors. Textbook of Peritoneal Dialysis, 2nd edn. Dordrecht: Kluwer, 2000:135–72.Google Scholar
  27. 27.
    Pannekeet MM, Imholz ALT, Struijk DG et al. The standard peritoneal permeability analysis: a tool for the assessment of peritoneal permeability characteristics in CAPD patients. Kidney Int. 1995;48:866–75.PubMedGoogle Scholar
  28. 28.
    Struijk DG, Krediet RT. Sodium balance in automated peritoneal dialysis. Pert Dial Int. 2000;20(Suppl. 2):S101–5.Google Scholar
  29. 29.
    Colombi A. Fluid and electrolyte balance in CAPD patients. In: La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco C, editors. Peritoneal Dialysis. Milan: Wichtig Editore, 1988;2:65–7.Google Scholar
  30. 30.
    Nakayama M, Yokoyama K, Kawaguchi Y, Sakai O. Effect of ultra low sodium concentration dialysate (ULNaD) in patients with UF loss. Pert Dial Int. 1991;11(Suppl. 1):187 (abstract).Google Scholar
  31. 31.
    Imholz ALT, Koomen GCM, Struijk DG, Arisz L, Krediet RT. Fluid and solute transport ipopipatients using ultralow sodium dialysate. Kidney Int. 1994;46:33 – 40.Google Scholar
  32. 32.
    Nakayama M, Yokoyama K, Kuboil et al. The effect of ultra-low sodium dialysate in CAPD. A kinetic and clinical analysis. Clin Nephrol. 1996;45:188–93.PubMedGoogle Scholar
  33. 33.
    Twardowski ZJ. New approaches to intermittent peritoneal dialysis therapies. In: Nolph KD, editor. Peritoneal Dialysis. Dordrecht: Kluwer, 1989:133–51.Google Scholar
  34. 34.
    Gault MH, Ferguson EL, Sidhu JS, Corbin RP. Fluid and electrolyte complications of peritoneal dialysis. Choice of dialysis solutions. Ann Intern Med. 1971;75:253–62.PubMedGoogle Scholar
  35. 35.
    Twardowski ZJ, Nolph KD, Khanna R, Gluck Z, Prowant BF, Ryan LP. Daily clearances with continuous ambulatory peritoneal dialysis and nightly peritoneal dialysis. Trans ASAIO. 1986;32:575–80.Google Scholar
  36. 36.
    Shen FH, Sherrard DJ, Scollard D, Merrit A, Curtis FK. Thist, relative hypernatremia and excessive weight gain in maintenance peritoneal dialysis. Trans ASAIO. 1978;24: 142–5.Google Scholar
  37. 37.
    Brown ST, Ahearn DJ, Nolph KD. Potassium removal with peritoneal dialysis. Kidney Int. 1973;4:67–9.PubMedGoogle Scholar
  38. 38.
    Gokal R. Continuous ambulatory peritoneal dialysis. In: Maher JF, editor. Replacement of Renal Function by Dialysis. Dordrecht: Kluwer, 1989:590–615.Google Scholar
  39. 39.
    Blumenkrantz MJ, Kopple JD, Moran JK, Coburn JW. Metabolic balance studies and dietary protein requirements in patients undergoing continuous ambulatory peritoneal dialysis. Kidney Int. 1982;21:849–61.PubMedGoogle Scholar
  40. 40.
    Sandle GI, Gaiger E, Tapster S, Goodship THJ. Evidence for large intestinal control of potassium homeostasis in uraemic patients undergoing CAPD. Clin Sci. 1987;73:247–52.PubMedGoogle Scholar
  41. 41.
    Lameire N, Ringoir S. Introductory remarks: an overview of peritonitis and other complications of continuous ambulatory peritoneal dialysis. In: Legrain M, editor. Continuous Ambulatory Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1980:229–37.Google Scholar
  42. 42.
    Oreopoulos DG, Khanna R, Williams P. Continuous ambulatory peritoneal dialysis. Nephron. 1982;30:293–303.PubMedGoogle Scholar
  43. 43.
    Spital A, Sterns RH. Potassium supplementation via the dialysate in continuous ambulatory peritoneal dialysis. Am J Kidney Dis. 1985;6:173–6.PubMedGoogle Scholar
  44. 44.
    Lindholm B, Alvestrand A, Hultman F, Bergstrom J. Muscle water and electrolytes in patients undergoing continuous ambulatory peritoneal dialysis. Acta Med Scand. 1986; 219:323–30.PubMedGoogle Scholar
  45. 45.
    Heide B, Pierratos A, Khanna R et al. Nutritional status of patients undergoing continuous ambulatory peritoneal dialysis. Pert Dial Bull. 1983;3:138–41.Google Scholar
  46. 46.
    Rubin J, Kirchner K, Barnes T, Teal N, Ray R, Bower JD. Evaluation of continuous ambulatory peritoneal dialysis. Am J Kidney Dis. 1983;3:199–204.PubMedGoogle Scholar
  47. 47.
    Schilling H, Wu G, Petit J et al. Nutritional status of patients on long term CAPD. Pert Dial Bull. 1985;5:12–18.Google Scholar
  48. 48.
    Khan AN, Bernardini J, Johnston JR, Piraino B. Hypokalemia in peritoneal dialysis patients. Pert Dial Int. 1996;16:652.Google Scholar
  49. 49.
    Parker A, Nolph KD. Magnesium and calcium mass transfer during continuous ambulatory peritoneal dialysis. Trans ASAIO. 1980;26:194–6.Google Scholar
  50. 50.
    Kwong MBL, Lee JSK, Chan MK. Transperitoneal calcium and magnesium transfer during an 8-hour dialysis. Pert Dial Bull. 1987;7:85–9.Google Scholar
  51. 51.
    Gokal R, Fryer R, McHugh M, Ward MK, Kerr DNS. Calcium and phosphate control in patients on continuous ambulatory peritoneal dialysis. In: Legrain M, editor. Continuous Ambulatory Peritoneal Dialysis. Amsterdam: Excerota Medica. 1980:283–91.Google Scholar
  52. 52.
    Nolph KD, Prowant B, Serkes KD et al. Multicentric evaluation of a new peritoneal dialysis solution with a high lactate and low magnesium concentration. Pert Dial Bull. 1983:3:63–5.Google Scholar
  53. 53.
    Kohaut EC, Balfe JW, Potter D, Alexandre S, Lum G. Hypermagnesemia and mild hypocarbia in pediatric patients on CAPD. Pert Dial Bull. 1983;3:41–2.Google Scholar
  54. 54.
    Rahman R, Heaton A, Goodship T et al. Renal osteodystrophy in patients on CAPD: a five year study. Pert Dial Bull. 1987;7:1–4.Google Scholar
  55. 55.
    Randall RE, Cohen MD, Spray CC, Rossmeisl EC. Hypermagnaesemia in renal failure: etiology and toxic manifestation. Ann Intern Med. 1964:61:73–8.PubMedGoogle Scholar
  56. 56.
    Navarro-Gonzalez JF. Magnesium in dialysis patients: serum levels and clinical implication. Clin Nephrol. 1998;49:373–8.PubMedGoogle Scholar
  57. 57.
    Charmicael A, Dickinson F, McHugh MI, Martin AM, Farrow M. Magnesium free dialysis for uremic pruritus. Br Med J. 1988:297:1584–5.Google Scholar
  58. 58.
    Cisari C, Gasco P, Calabrese G, Pratesi G, Gonnella M. Serum magnesium and nerve conduction velocity in uremic patients on chronic hemodialysis. Magnesium Res. 1989; 4:267–9.Google Scholar
  59. 59.
    Gonella M. Plasma and tissue levels of magnesium in chronically hemodialyzed patients: effects of dialysate magnesium levels. Nephron. 1983;34:141–5.PubMedGoogle Scholar
  60. 60.
    Meema HE, Oreopoulos DG, Rapoport A. Serum magnesium level and arterial calcification in end-stage renal disease. Kidney Int. 1987;32:388–94.PubMedGoogle Scholar
  61. 61.
    Massry SG, Coburn JW, Kleeman CR. Evidence for suppression of parathyroid gland activity by hypermagnesemia. J Clin Invest. 1970;49:1619–29.PubMedGoogle Scholar
  62. 62.
    Navarro JF, Mora C, Garcia J. Serum magnesium and parathyroid hormone levels in dialysis patients. Kidney Int. 2000;57:2654.Google Scholar
  63. 63.
    Hutchison AJ, Freemont AJ, Boulton HF, Gokal R. Lowcalcium dialysis fluid and oral calcium carbonate in CAPD. A method of controlling hyperphosphataemia whilst minimizing aluminium exposure and hypercalcaemia. Nephrol Dial Transplant. 1992;7:1219–25.PubMedGoogle Scholar
  64. 64.
    Ejaz AA, McShane AP, Gandhi VC, Leehey DJ, Ing TS. Hypomagnesemia in continuous ambulatory peritoneal dialysis patients dialyzed with a low-magnesium peritoneal dialysis solution. Perit Dial Int. 1995;15:61–4.PubMedGoogle Scholar
  65. 65.
    Whang R. Magnesium deficiency: pathogenesis, prevalence and clinical implications. Am J Med. 1987;82(Suppl. 3A): 24–9.PubMedGoogle Scholar
  66. 66.
    Hollifield J. Magnesium depletion, diuretics and arrhythmias. Am J Med. 1987;82(Suppl. 3A):30–7.PubMedGoogle Scholar
  67. 67.
    Selling M. Electrocardiographic patterns of magnesium depletion appearing in alcoholic heart disease. Ann NY Acad Sci. 1969;162:906–17.Google Scholar
  68. 68.
    Saha HT, Harmoinen APT, Pasternack AI. Measurement of serum ionized magnesium in CAPD patients. Pert Dial Int. 1997;17:347–52.Google Scholar
  69. 69.
    Hutchinson AJ. Serum magnesium and end-stage renal disease. Pert Dial Int. 1997;17:327–9.Google Scholar
  70. 70.
    Hutchison AJ, Gokal R. Improved solutions for peritoneal dialysis: physiological calcium solutions, osmotic agents and buffers. Kidney Int. 1992;42(Suppl. 38):S153–9.Google Scholar
  71. 71.
    Breuer J, Moniz C, Baldwin D, Parsons V. The effects of zero magnesium dialysate and magnesium supplements on ionized calcium concentration in patients on regular dialysis treatment. Nephrol Dial Transplant. 1987;2:347–50.PubMedGoogle Scholar
  72. 72.
    Shan G. Winer R Cutler R et al. Effects of a magnesium-free dialysate on magnesium metabolism during continuous ambulatory peritoneal dialysis. Am J Kidney Dis. 1987; 10:268–75.Google Scholar
  73. 73.
    Delmez JA, Slatopolsky E, Martin KJ, Gearing BN, Harter HR. Minerals, vitamin D, and parathyroid hormone in continuous ambulatory peritoneal dialysis. Kidney Int. 1982;21:862–7.PubMedGoogle Scholar
  74. 74.
    Digenis G, Khanna R, Pierratos A et al. Renal osteodystrophy in patients maintained on CAPD for more than three years. Pert Dial Bull. 1983;3:81–6.Google Scholar
  75. 75.
    Gokal R, Ramos JM, Ellis HA et al. Histological renal osteodystrophy and 25 hydroxycholecalciferol and aluminum levels in patients on continuous ambulatory peritoneal dialysis. Kidney Int. 1983;23:15–21.PubMedGoogle Scholar
  76. 76.
    Delmez JA, Fallon M, Bergfeld M, Gearing BN, Dougan C, Teitelbaum S. Continuous ambulatory peritoneal dialysis and bone. Kidney Int. 1986;30:379–84.PubMedGoogle Scholar
  77. 77.
    Bucciante G, Bianchi M, Valenti G. Progress of renal osteodystrophy during CAPD. Clin Nephrol. 1984;6:279–83.Google Scholar
  78. 78.
    Lindholm B, Bergstrom J. Nutritional aspects of CAPD. In: Gokal R, editor. Continuous Ambulatory Peritoneal Dialysis. Edinburgh: Churchill Livingstone, 1986:228–64.Google Scholar
  79. 79.
    Sheikh MS, Maguire JA, Emmett M et al. Reduction of dietary phosphorus absorption by phosphorus binders. A theoretical, in vitro, and in vivo study. J Clin Invest. 1989;83:66–73.PubMedGoogle Scholar
  80. 80.
    Ramirez JA, Emmett M, White MG et al. The absorption of dietary phosphorus and calcium in hemodialysis patients. Kidney Int. 1986;30:753–9.PubMedGoogle Scholar
  81. 81.
    Davenport A, Goel S, MacKenzie JC. Audit of the use of calcium carbonate as phosphate binder in 100 patients treated with continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant. 1992;7:632–5.PubMedGoogle Scholar
  82. 82.
    Joffe P, Olsen F, Heaf J, Gammelgaard B, Pondephant J. Aluminium concentrations in serum, dialysate, urine and bone among patients undergoing continuous ambulatory peritoneal dialysis. Clin Nephrol. 1989;32:133–8.PubMedGoogle Scholar
  83. 83.
    Andreoli SP, Bergestein JM, Sherrard DJ. Aluminium intoxication from aluminium containing phosphate binders in children with azotemia not undergoing dialysis. N Engl J Med. 1984;310:1074–84.Google Scholar
  84. 84.
    Ackrill P, Day J, Ahmed R. Aluminium and iron overload in chronic dialysis. Kidney Int. 1988;33(Suppl. 24):S163–7.Google Scholar
  85. 85.
    Altmannn P, Dhanesha U, Hamon C, Cunningham J, Blair J, Marsch F. Disturbance of cerebral function by aluminium in hemodialysis patients without overt aluminium toxicity. Lancet. 1989;2:7–12.Google Scholar
  86. 86.
    Martis L, Serkes KD, Nolph KD. Calcium as a phosphate binder: is there a need to adjust peritoneal dialysate calcium concentration for patients using CaCO3. Pert Dial Int. 1989;9:325–8.Google Scholar
  87. 87.
    Weinreich T, Passlick-Deetjen J, Ritz E, collaborators of the peritoneal dialysis multicenter study group. Low dialysate calcium in continuous ambulatory peritoneal dialysis: a randomized controlled multicenter trial. Am J Kidney Dis. 1995;25:452–60.PubMedGoogle Scholar
  88. 88.
    Weinreich T. Low or high calcium dialysate solutions in peritoneal dialysis? Kidney Int. 1996;50(Suppl. 56):S92–6.Google Scholar
  89. 89.
    Cunningham J, Beer J, Coldwell RD, Noonan K, Sawyer N, Makin HLJ. Dialysate calcium reduction in CAPD patients treated with calcium carbonate and alfacalcidol. Nephrol Dial Transplant. 1992;7:63–8.PubMedGoogle Scholar
  90. 90.
    Ritz E, Weinreich T, Matthias S. Is it necessary to readjust dialysis calcium concentration. J Nephrol. 1992;5:70–4.Google Scholar
  91. 91.
    Brown CB, Hamdy NAT, Boletis J, Kanis JA. Rationale for the use of low calcium solution in CAPD. In: La Greca G, Ronco C, Feriani M, Chiaramonte S, Conz P, editors. Peritoneal Dialysis. Milan: Wichtig Editore, 1991:125–37.Google Scholar
  92. 92.
    Piraino B, Perlmutter JA, Holley JL, Johnston JR, Bernardini J. The use of dialysate containing 2.5 mEq/1 calcium in peritoneal dialysis patients. Pert Dial Int. 1992; 12:75–6.Google Scholar
  93. 93.
    Hutchison AJ, Gokal R. Towards tailored dialysis fluids in CAPD: the role of reduced calcium and magnesium in dialysis solution. Pert Dial Int. 1992;12:199–205.Google Scholar
  94. 94.
    Beer J, Tailor D, Noonan K, Cunningham J. Rapid exacerbation of hyperparathyroidism in patients converted to low calcium dialysate without adequate calcium supplementation. Perit Dial Int. 1993;13(Suppl. 1):S30.Google Scholar
  95. 95.
    Andersen KEH. Calcium transfer during intermittent peritoneal dialysis. Nephron. 1981;29:63–7.PubMedGoogle Scholar
  96. 96.
    Schmitt H, Ittel TH, Schafer L, Sieberth HG. Effect of a low calcium dialysis solution on serum parathyroid hormone in automated peritoneal dialysis. Pert Dial Int. 1993;13(Suppl. 1):S59.Google Scholar
  97. 97.
    Putman J. The living peritoneum as a dialysis membrane. Am J Physiol. 1923;63:548–65.Google Scholar
  98. 98.
    Cunningham RS. Studies on absorption from serious cavities. III. The effect of dextrose upon the peritoneal mesothelium. Am J Physiol. 1920;53:458–88.Google Scholar
  99. 99.
    Palmer RA, Quinton WE, Gray JF et al. Prolonged peritoneal dialysis for chronic renal failure. Lancet. 1964;1:700–2.PubMedGoogle Scholar
  100. 100.
    Rubin J, Nolph KD, Popovich RP, Moncrief JW. Drainage volumes during continuous ambulatory peritoneal dialysis. ASAIO J. 1979;2:54–60.Google Scholar
  101. 101.
    Gokal R, Mistry CD. Glucose polymer as osmotic agent in CAPD. In: La Greca G, Ronco C, Feriani M, Chiaramonte S, Conz P, editors. Peritoneal Dialysis. Milan: Wichtig Editore, 1991:119–23.Google Scholar
  102. 102.
    Twardowski ZJ, Khanna R, Nolph KD. Osmotic agents and ultrafiltration in peritoneal dialysis. Nephron. 1986;42:93–101.PubMedGoogle Scholar
  103. 103.
    Starling EH. On the absorption of fluids from connective tissue spaces. J Physiol. 1895;19:312–25.Google Scholar
  104. 104.
    Mistry CD, Mallick NP, Gokal R. Ultrafiltration with an isosmotic solution during long peritoneal dialysis exchanges. Lancet. 1987;2:178–82.PubMedGoogle Scholar
  105. 105.
    Staverman PJ. The theory of measurement of osmotic pressure. Rec Trav Chim Pays-Bas. 1951;70:344–52.Google Scholar
  106. 106.
    Kiil F. Mechanism of osmosis. Kidney Int. 1982;21:303–8.PubMedGoogle Scholar
  107. 107.
    Mistry CD, Gokal R. New osmotic agents for peritoneal dialysis: where we are and where we’re going. Semin Dial. 1991;4:9–12.Google Scholar
  108. 108.
    Mistry CD, Gokal R. A single daily overnight (12 hr dwell) use of 7.5% glucose polymer (Mw 18,700; Mn 7,300) + 0.35% glucose solution: a 3-month study. Nephrol Dial Transplant. 1993;8:443–7.PubMedGoogle Scholar
  109. 109.
    Pyle WK, Moncrief JW, Popovich RP. Peritoneal transport evaluation in CAPD. In: Moncrief JW, Popovich RP, editors. CAPD Update. New York: Masson, 1981:35–52.Google Scholar
  110. 110.
    Maher JF, Bennett RR, Hirszel P, Chakrabarti E. The mechanism of dextrose-enhanced transport rates. Kidney Int. 1985;28:16–20.PubMedGoogle Scholar
  111. 111.
    Krediet RT, Boeschoten EW, Zuyderhoudt FMJ, Arisz L. The relationship between peritoneal glucose absorption and body fluid loss by ultrafiltration during continuous ambulatory peritoneal dialysis. Clin Nephrol. 1987;27:51–5.PubMedGoogle Scholar
  112. 112.
    Maher JF. Peritoneal transport rate: mechanisms, limitation and methods for augmentation. Kidney Int. 1980;18: S117–21.Google Scholar
  113. 113.
    Nolph KD, Mactier RA, Khanna R, Twardowski ZJ, Moore H, McGary T. The kinetics of ultrafiltration during peritoneal dialysis: the role of lymphatics. Kidney Int. 1987;32:219–26.PubMedGoogle Scholar
  114. 114.
    Mactier RA, Khanna R, Twardowski ZJ, Moore H, Nolph KD. Contribution of lymphatic absorption to loss of ultrafiltration and solute clearances in CAPD. J Clin Invest. 1987;80:1311–16.PubMedGoogle Scholar
  115. 115.
    Grodstein GP, Blumenkrantz MJ, Kopple JD, Moran JK, Coburn JW. Glucose absorption during continuous ambulatory peritoneal dialysis. Kidney Int. 1981;19:564–7.PubMedGoogle Scholar
  116. 116.
    DeSanto NG, Capodicasa G, Senatore R et al. Glucose utilization from dialysate in patients on continuous ambulatory peritoneal dialysis. Int J Artif Organs. 1978;2:119–24.Google Scholar
  117. 117.
    Lindholm B, Bergstrom J. Nutritional management of patients undergoing peritoneal dialysis. In: Nolph KD, editor. Peritoneal Dialysis. Dordrecht: Kluwer, 1989:230–60.Google Scholar
  118. 118.
    Kreusch G, Bammatter F, Mordasini R, Binswanger U. Serum lipoprotein concentrations during continuous ambulatory peritoneal dialysis. In: Ghal GM, Kessel M, Nolph KD, editors. Advances in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1981:427–9.Google Scholar
  119. 119.
    Lindholm B, Karlander SG, Norbek HE, Furst P, Bergstrom J. Carboyhdrate and lipid metabolism in CAPD patients. In: Atkins R, Thomson N, Farrell P, editors. Peritoneal Dialysis. Edinburgh: Churchill Livingstone, 1981:198–210.Google Scholar
  120. 120.
    Von Baeyer H, Gahl GM, Riedinger H et al. Adaptation of CAPD patients to the continuous peritoneal energy upyake. Kidney Int. 1983;23:29–34.Google Scholar
  121. 121.
    Boyer J, Gill GN, Epstein FH. Hyperglycemia and hyperosmolality complicating peritoneal dialysis. Ann Intern Med. 1967;67:568–72.PubMedGoogle Scholar
  122. 122.
    Nolph KD, Rosenfeld PS, Powell JT, Danforth JR. Peritoneal glucose transport and hyperglycemia during peritoneal dialysis. Am J Med Sci. 1970;259:272–81.PubMedGoogle Scholar
  123. 123.
    Heaton A, Johnston DG, Burrin JM et al. Carbohydrate and lipid metabolism during continuous ambulatory peritoneal dialysis: the effect of a single dialysis cycle. Clin Sci. 1983; 65:539–45.PubMedGoogle Scholar
  124. 124.
    Amstrong VW, Creutzfeldt W, Ebert R, Fuchs C, Hilgers R, Scheler F. Effect of dialysis glucose load on plasma and glucoregulatory hormones in CAPD patients. Nephron. 1985;39:141–5.Google Scholar
  125. 125.
    Amstrong VW, Buschmann U, Ebert R, Fuchs C, Rieger J, Scheler F. Biochemical investigations of CAPD: plasma levels of trace elements and amino acids and impaired glucose tolerance during the course of treatment. Int J Artif Organs. 1980;3:237–41.Google Scholar
  126. 126.
    Oreopoulos DG, Marliss E, Anderson GH et al. Nutritional aspects of CAPD and the potential use of amino acid containing dialysis solutions. Perit Dial Bull. 1983;3:10–15.Google Scholar
  127. 127.
    Wideroe TE, Smeby LC, Myking OL. Plasma concentrations and transperitoneal transport of native insulin and C-peptide in patients on continuous ambulatory peritoneal dialysis. Kidney Int. 1984;25:82–7.PubMedGoogle Scholar
  128. 128.
    Lindholm B, Bergstrom J, Karlander SG. Glucose metabolism in patients on continuous ambulatory peritoneal dialysis. Trans ASAIO. 1981;17:58–60.Google Scholar
  129. 129.
    Lindholm B, Bergstrom J, Norbek HE. Lipoprotein (LP) metabolism in patients on continuous ambulatory peritoneal dialysis. In: Gahl GM, Kessel M, Nolph KD, editors. Advances in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1981:434–6.Google Scholar
  130. 130.
    Lindholm B, Karlander SG, Norbek HE, Bergstrom J. Glucose and lipid metabolism in peritoneal dialysis. In: La Greca G, Biasioli S, Ronco C, editors, Peritoneal Dialysis. Milan: Wichtig Editore, 1982:219–30.Google Scholar
  131. 131.
    Gokal R, Ramos JM, McGurk JG, Ward MK, Kerr DNS. Hyperlipidaemia in patients on continuous ambulatory peritoneal dialysis. In: Gahl GM, Kessel M, Nolph KD, editors. Advances in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1981:430–3.Google Scholar
  132. 132.
    Roncari DAK, Breckenridge WC, Khanna R, Oreopoulos DG. Rise in high-density lipoprotein-cholesterol in some patients treated with CAPD. Pert Dial Bull. 1981;1:136–7.Google Scholar
  133. 133.
    Ramos JM, Heaton A, McGurk JG, Wark MK, Kerr DNS. Sequential changes in serum lipids and their subfractions in patients receiving continuous ambulatory peritoneal dialysis. Nephron. 1983;35:20–3.PubMedGoogle Scholar
  134. 134.
    Nolph KD, Ryan KL, Prowant B, Twardowski ZJ. A cross sectional assessment of serum vitamin D and triglyceride concentration in a CAPD population. Pert Dial Bull. 1984; 4:232–7.Google Scholar
  135. 135.
    Lindholm B, Norbek HE. Serum lipids and lipoproteins during continuous ambulatory peritoneal dialysis. Acta Med Scand. 1986;220:143–51.PubMedGoogle Scholar
  136. 136.
    Khanna R, Breckenridge WC, Roncari DAK, Digenis G, Oreopoulos DG. Lipids abnormalities in patients undergoing continuous ambulatory peritoneal dialysis. Perit Dial Bull. 1983;3:S13–15.Google Scholar
  137. 137.
    Maillard LC. Action des acides amines sur le sucres: formation des melanoidines par voie metabolique. CR Acad Sci. 1921;154:66–8.Google Scholar
  138. 138.
    Dobbie JW. Advances in glycosylation end products in peritoneal dialysis tissue with different solutions. Pert Dial Int. 1997;17(Suppl. 2):S27–30.Google Scholar
  139. 139.
    Henderson IS, Couper IA, Lumsden A. The effect of shelflife of peritoneal dialysis fluid on ultrafiltration in CAPD. In: La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco C, editors. Peritoneal Dialysis. Milan: Wichtig Editore, 1986: 85–6.Google Scholar
  140. 140.
    Martinson E, Wieslander A, Kjellestrand P, Boberg U. Toxicity in heat sterilized fluids for peritoneal dialysis derives from degradation of glucose. Trans ASAIO. 1992; 38:370–4.Google Scholar
  141. 141.
    Rippe B, Simonsen O, Wieslander A, Landgren C. Clinical and physiological effects of new, less toxic and less acidic fluid for peritoneal dialysis. Pert Dial Int. 1997;17:27–34.Google Scholar
  142. 142.
    Coles GA, Williams JD, Topley N. Peritoneal inflammation and long term changes in peritoneal structure and function. In: Gokal R, Khanna R, Krediet R, Nolph K, editors. Textbook of Peritoneal Dialysis, 2nd edn. Dordrecht: Kluwer, 2000:565–83.Google Scholar
  143. 143.
    De Paepe M, Matthijs E, Peluso F et al. Experience with glycerol as the osmotic agent in peritoneal dialysis in diabetic and non-diabetic patients. In: Keen H, Legrain M, editors. Prevention and Treatment of Diabetic Nephropathy. Boston: MTP, 1983:299–313.Google Scholar
  144. 144.
    Heaton A, Ward MK, Johnston DG, Nicholson DV, Alberti KGMM, Kerr DNS. Short-term studies on the use of glycerol as an osmotic agent in continuous ambulatory peritoneal dialysis. Clin Sci. 1984;67:121–30.PubMedGoogle Scholar
  145. 145.
    Matthys E, Dolkart R, Lameire N. Extended use of a glycerol-containing dialysate in diabetic CAPD patients. Perit Dial Bull. 1987;7:10–15.Google Scholar
  146. 146.
    Lameire N, Faict D. Peritoneal dialysis solutions containing glycerol and amino acids. Perit Dial Int. 1994;14(Suppl. 13):S145–51.PubMedGoogle Scholar
  147. 147.
    Daniels FH, Leonard EF, Cortell S. Glucose and glycerol compared as osmotic agents for peritoneal dialysis. Kidney Int. 1984;25:20–5.PubMedGoogle Scholar
  148. 148.
    Lindholm B, Werynski A, Bergstrom J. Kinetic of peritoneal dialysis with glycerol and glucose as osmotic agents. Trans ASAIO. 1987;33:19–27.Google Scholar
  149. 149.
    Heaton A, Ward MK, Johnston DG, Alberti KGMM, Kerr DNS. Evaluation of glycerol as an osmotic agent for continuous ambulatory peritoneal dialysis in end-stage renal failure. Clin Sci. 1986:70:23–9.PubMedGoogle Scholar
  150. 150.
    Matthys E, Dolkart R, Lameire N. Potential hazards of glycerol dialysate in diabetic CAPD patients. Perit Dial Bull. 1987;7:16–19.Google Scholar
  151. 151.
    Hain H, Kessel M. Aspects of new solutions for peritoneal dialysis. Nephrol Dial Transplant. 1987;2:67–72.PubMedGoogle Scholar
  152. 152.
    Gokal R, Mistry C. Osmotic agents in continuous ambulatory peritoneal dialysis. In: La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco C, editors. Peritoneal Dialysis. Milan: Wichtig Editore, 1988:61–5.Google Scholar
  153. 153.
    Goodship THJ, Heaton A, Wilkinson R, Ward MK. The use of glycerol as an osmotic agent in continuous ambulatory peritoneal dialysis. In: Ota K, Maher J, Winchester J, Hirszel P, editors. Current Concepts in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1992:143–7.Google Scholar
  154. 154.
    Faict D, Hartman JP, Lameire N, Kesteloot D, Peluso F. The evaluation of a peritoneal dialysis solution with amino acids and glycerol in a new rat model. Perit Dial Int. 1990;10(Suppl. 1):S60.Google Scholar
  155. 155.
    Lameire N, Faict D. Peritoneal dialysis solutions containing glycerol and amino acids. Pert Dial Int. 1994;14(Suppl. 3): S145–51.Google Scholar
  156. 156.
    Dobbie JW, Lloyd JK, Gall CA. Categorization of ultrastructural changes in peritoneal mesothelium, stroma and blood vessels in uremia and CAPD patients. In: Khanna R, Nolph KD, Prowant P, Twardowski ZJ, Oreopoulos DG, editors. Advances in Continuous Ambulatory Peritoneal Dialysis. Toronto: Peritoneal Dialysis Bulletin Inc., 1990: 3–12.Google Scholar
  157. 157.
    Faict D, Lameire N, Kesteloot D, Peluso F. Evaluation of peritoneal dialysis solutions with amino acids and glycerol in a rat model. Nephrol Dial Transplant. 1991;6: 120–4.PubMedGoogle Scholar
  158. 158.
    Van Biesen W, Faict D, Boer W, Lameire N. Further animal and human experience with a 0.6% amino acid/1.4% glycerol peritoneal dialysis solution. Perit Dial Int. 1997;17(Suppl. 2):S56–62.PubMedGoogle Scholar
  159. 159.
    Young GA, Kopple JD, Lindholm B et al. Nutritional assessment of continuous ambulatory peritoneal dialysis patients: an international study. Am J Kidney Dis. 1991; 17:462–71.PubMedGoogle Scholar
  160. 160.
    Kopple JD, Blumenkrantz MJ, Jones MR, Moran JK, Coburn JW. Plasma amino acid levels and amino acid losses during continuous ambulatory peritoneal dialysis. Am J Clin Nutr. 1982:36:395–402.PubMedGoogle Scholar
  161. 161.
    Lindholm LB, Bergstrom J. Nutritional aspects on peritoneal dialysis. Kidney Int. 1992;42(Suppl. 38):S165–71.Google Scholar
  162. 162.
    Gjessing J. Addition of amino acids to peritoneal dialysis fluid. Lancet. 1968;2:812.PubMedGoogle Scholar
  163. 163.
    Oreopoulos DG, Crassweller P, Katirtzoglou A et al. Amino acids as an osmotic agent (instead of glucose) in continuous ambulatory peritoneal dialysis. In: Legrain M, editor. Continuous Ambulatory Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1980:335–40.Google Scholar
  164. 164.
    Williams PF, Marliss EB, Harvey Anderson G et al. Amino acid absorption following intraperitoneal administration in CAPD patients. Pert Dial Bull. 1982;2:124–30.Google Scholar
  165. 165.
    Nakao T, Ogura M, Takahashi H, Okada T. Charge-affected transperitoneal movement of amino acids in CAPD. Perit Dial Int. 1996;16(Suppl. 1):S88–90.PubMedGoogle Scholar
  166. 166.
    Oren A, Wu G, Harvey Anderson G et al Effective use of amino acid dialysate over four weeks in CAPD patients. Pert Dial Bull. 1983;3:66–73.Google Scholar
  167. 167.
    Goodship THJ, Lloyd S, McKenzie PW et al. Short-term studies on the use of amino acids as an osmotic agent in continuous ambulatory peritoneal dialysis. Clin Sci. 1987; 73:471–8.PubMedGoogle Scholar
  168. 168.
    Lindholm B, Werynsky A, Bergstrom J. Peritoneal dialysis with amino acid solutions: fluid and solute transport kinetics. Artif Organs. 1988;12:2–10.PubMedGoogle Scholar
  169. 169.
    Lindholm B, Traneus A, Werynski A, Osterberg T, Bergstrom J. Amino acids for peritoneal dialysis: technical and metabolic implications. In: La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco C, editors. Peritoneal Dialysis. Milan: Wichtig Editore, 1986:149–54.Google Scholar
  170. 170.
    Young GA, Dibble JB, Taylor AE, Kendall S, Brownjohn AM. A longitudinal study of the effects of amino acid-based CAPD fluid on amino acid retention and protein losses. Nephrol Dial Transplant. 1989;4:900–5.PubMedGoogle Scholar
  171. 171.
    Young GA, Dibble JB, Brownjohn AM. The use of amino acid based CAPD fluid in chronic renal failure. In: Lubec G, Rosenthal GA, editors. Amino Acids, Chemistry, Biology and Medicine. Dordrecht. Kluwer. 1992:850–7.Google Scholar
  172. 172.
    Steinhauer HB, Lubrich-Birker I, Kluthe R, Baumann G, Schollmeyer P. Effects of amino acid based dialysis solution on peritoneal permeability and prostanoid generation in patients undergoing continuous ambulatory peritoneal dialysis. Am J Nephrol. 1992;12:61–7.PubMedGoogle Scholar
  173. 173.
    Douma CE, de Waart DR, Struijk DG, Krediet RT. Effect of amino acid based dialysate on peritoneal blood flow and permeability in stable CAPD patients: a potential role for nitric oxide? Clin Nephrol. 1996;45:295–302.PubMedGoogle Scholar
  174. 174.
    Pedersen FB. Alternate use of amino acid and glucose solutions in CAPD. Contrib Nephrol. 1991;89:147–54.PubMedGoogle Scholar
  175. 175.
    Dombros NV, Prutis K, Tong M et al. Six-month overnight intraperitoneal amino-acid infusion in continuous ambulatory peritoneal dialysis (CAPD) patients. No effect on nutritional status. Pert Dial Int. 1990;10:79–84.Google Scholar
  176. 176.
    Lindholm B, Bergstrom J. Amino acids in CAPD solutions: lights and shadows. In: La Greca G, Ronco C, Feriani M, Chiaramonte S, Conz P, editors. Peritoneal Dialysis. Milan: Wichtig Editore, 1991:139–43.Google Scholar
  177. 177.
    Okamura K, Yamauchi J, Nakahamma H et al. The effects of adding essential amino acids to the dialysis solution of continuous ambulatory peritoneal dialysis patients. In: Maekawa M, Nolph KD, Kishimoto T, Moncrief J, editors. Machine Free Dialysis for Patient Convenience. The Fourth ISAO Official Satellite Symposium on CAPD. Cleveland: ISAO Press, 1984:103–7.Google Scholar
  178. 178.
    Alvestrand A, Furst P, Bergstrom J. Plasma and muscle free amino acids in uremia: influence of nutrition with amino acids. Clin Nephrol. 1982;18:297–305.PubMedGoogle Scholar
  179. 179.
    Young GA, Dibble JB, Hobson SM et al. The use of an amino-acid-based CAPD fluid over 12 weeks. Nephrol Dial Transplant. 1989;4:285–92.PubMedGoogle Scholar
  180. 180.
    Dibble JB, Young GA, Hobson SM, Brownjohn AM. Amino-acid-based continuous ambulatory peritoneal dialysis (CAPD) fluid over twelve weeks: effects on carbohydrate and lipid metabolism. Pert Dial Int. 1990;10:71–7.Google Scholar
  181. 181.
    Bruno M, Bagnis C, Marangella M et al. CAPD with an amino acid solution: a long-term, cross-over study. Kidney Int. 1989;35:1189–94.PubMedGoogle Scholar
  182. 182.
    Arfeen S, Goodship THJ, Kirkwood A, Ward MK. The nutritional/metabolic and hormonal effects of 8 weeks of continuous ambulatory peritoneal dialysis with a 1% amino acid solution. Clin Nephrol. 1990;33:192–9.PubMedGoogle Scholar
  183. 183.
    Jones MR, Martis L, Algrim CE et al. Amino acid solutions for CAPD: rationale and clinical experience. Miner Electrolyte Metab. 1992;18:309–15.PubMedGoogle Scholar
  184. 184.
    Kopple JD, Bernard D, Messana J et al. Treatment of malnourished CAPD patients with an amino acid based dialysate. Kidney Int. 1995;47:1148–57.PubMedGoogle Scholar
  185. 185.
    Faller B, Aparicio M, Faict D et al. Clinical evaluation of an optimized 1.1% amino acid solution for peritoneal dialysis. Nephrol Dial Transplant. 1995;10:1432–7.PubMedGoogle Scholar
  186. 186.
    Jones MR, Hagen T, Boyle AC et al. Treatment of malnutrition with 1.1% amino acid peritoneal dialysis solution: results of a multicenter outpatient study. Am J Kidney Dis. 1998;32:761–9.PubMedGoogle Scholar
  187. 187.
    Jones M, Kalil R, Blake P, Martis L, Oreopoulos DG. Modification of an amino acid solution for peritoneal dialysis to reduce risk of acidemia. Pert Dial Int. 1997;17:66–71.Google Scholar
  188. 188.
    Plum J, Fussholler A, Schoenicke G et al. In vivo and in vitro effects of amino-acid-based and bicarbonate-buffered peritoneal dialysis solutions with regard to peritoneal transport and cytokines/prostanoids dialysate concentration. Nephrol Dial Transplant. 1997;12:1652–60.PubMedGoogle Scholar
  189. 189.
    Lazarus-Barlow WS. Observations upon the initial rates of osmosis of certain substances in water and in fluids containing albumen. J Physiol. 1895–6;19:140–66.Google Scholar
  190. 190.
    Hain H, Ghal G. Osmotic agent. An update. Contrib Nephrol. 1991;89:119–27.PubMedGoogle Scholar
  191. 191.
    Daniels FH, Nedev ND, Cataldo T, Leonard EF, Cortell S. The use of polyelectrolytes as osmotic agent for peritoneal dialysis. Kidney Int. 1988;33:925–9.PubMedGoogle Scholar
  192. 192.
    Struijk DG, Bakker JC, Krediet RT, Koomen GCM, Stekkinger P, Arisz L. Effect of intraperitoneal administration of two different batches of albumin solutions on peritoneal solute transport in CAPD patients. Nephrol Dial Transplant. 1991;6:198–202.PubMedGoogle Scholar
  193. 193.
    Alsop RM. History, chemical and pharmaceutical development of icodextrin. Perit Dial Int. 1994;14(Supp1.2):S5–12.Google Scholar
  194. 194.
    Mistry CD, Fox JE, Mallick NP, Gokal R. Circulating maltose and isomaltose in chronic renal failure. Kidney Int. 1987;32(Suppl. 22):S210–14.Google Scholar
  195. 195.
    Peers E, Gokal R. Icodextrin: overview of clinical experience. Pert Dial Int. 1997;17:22–6.Google Scholar
  196. 196.
    Mistry CD, Gokal R, Mallick NP. Glucose polymer as an osmotic agent in CAPD. In: Maher JF, Winchester JF, editors. Frontiers in Peritoneal Dialysis. New York: Field, Rich and Associates, 1986:241–8.Google Scholar
  197. 197.
    Winchester JF, Stegink LD, Ahmad S et al. A comparison of glucose polymer and dextrose as osmotic agents in CAPD. In: Maher JF, Winchester JF, editors. Frontiers in Peritoneal Dialysis. New York: Field, Rich and Associates, 1986:231–40.Google Scholar
  198. 198.
    Higgins JT, Gross ML, Somani P. Patient tolerance and dialysis effectiveness of a glucose polymer-containing peritoneal dialysis solution. Pert Dial Bull. 1984;4:S131–8.Google Scholar
  199. 199.
    Winchester JF. Alternative osmotic agents to dextrose for peritoneal dialysis. In: La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco C, editors. Peritoneal Dialysis: Proceedings of Second International Course on Peritoneal Dialysis. Milan: Wichtig Editore, 1986:135–42.Google Scholar
  200. 200.
    Mistry CD, Gokal R. Icodextrin in peritoneal dialysis: early development and clinical use. Perit Dial Int. 1994;14(Suppl. 2): 513–21.Google Scholar
  201. 201.
    Mistry CD, Mallick NP, Gokal R. The advantage of glucose polymer as an osmotic agent in continuous peritoneal dialysis. Proc EDTA. 1985;22:15–20.Google Scholar
  202. 202.
    Mistry CD, Mallick NP, Gokal R. The use of large molecular weight polymer (MW 20,000) as an osmotic agent in continuous ambulatory peritoneal dialysis (CAPD). In: Khanna R, Nolph KD, Prowant BF, Twardowski ZJ, Oreopoulos DG, editors. Advances in Peritoneal Dialysis. Toronto: Peritoneal Dialysis Bulletin Inc., 1986:7–11.Google Scholar
  203. 203.
    Mistry CD, Gokal R. The use of hyposmolar glucose polymer solution in continuous ambulatory peritoneal dialysis. In: Avram MM, Giordano C, editors. Ambulatory Peritoneal Dialysis. New York: Plenum, 1990:83–6.Google Scholar
  204. 204.
    Mistry CD, Walker M, Gokal R. Safe use of glucose polymer dialysate over three months in CAPD patients. Nephrol Dial Transplant. 1990;5:299.Google Scholar
  205. 205.
    Mistry CD, Gokal R, Peers EM, and the MIDAS study group. A randomized multicenter clinical trial comparing isosmolar icodextrin with hyperosmolar glucose solutions in CAPD. Kidney Int. 1994;46:496–503.PubMedGoogle Scholar
  206. 206.
    Wilkie ME, Brown CB. Polyglucose solutions in CAPD. Pert Dial Int. 1997;17(Suppl. 2):S47–50.Google Scholar
  207. 207.
    Queffeulou G, Lebrun-Vignes B, Wheatley P, Montagnac R, Mignon F. Allergy to Icodextrin. Lancet. 2000;356:75.PubMedGoogle Scholar
  208. 208.
    Lam Po Tang MKL, Bending MR, Kwan JTC. Icodextrin hypersensitivity in a CAPD patient. Pert Dial Int. 1997; 17:82–4.Google Scholar
  209. 209.
    Heering P, Brause M, Plum J, Grabensee B. Peritoneal reaction to icodextrin in a female patient on CAPD. Perit Dial Int. 2001;21:321–2.PubMedGoogle Scholar
  210. 210.
    Del Rosso G, Di Liberato C, Parilli A, Cappelli P, Bonomino M. A new form of acute adverse reaction to icodextrin in a peritoneal dialysis patient. Nephrol Dial Transplant. 2000;15:927–8.PubMedGoogle Scholar
  211. 211.
    Schildt B, Bouveng R, Sollenberg M. Plasma substitute induced impairment of reticuloendothelial system function. Acta Chir Scand. 1975;141:7–13.PubMedGoogle Scholar
  212. 212.
    Davies DS. Kinetics of icodextrin. Perit Dial Int. 1994; 14(Suppl. 2):S45–50.Google Scholar
  213. 213.
    Krediet RT, Brown CB, Imholz ALT, Koomen GCM. Protein clearance and icodextrin. Pert Dial Int. 1994; 14(Suppl. 2):S39–44.Google Scholar
  214. 214.
    Gokal R, Mistry CD, Peers EM and the MIDAS study group. Peritonitis occurrence in a multicentre study of icodextrin and glucose in CAPD. Pert Dial Int. 1995;15: S226–30.Google Scholar
  215. 215.
    Wilkie ME, Plant MJ, Edwards L, Brown C. Icodextrin 7.5% dialysate solution (glucose polymer) in patients with ultrafiltration failure: extension of CAPD technique survival. Perit Dial Int. 1997;17:84–7.PubMedGoogle Scholar
  216. 216.
    Posthuma N, ter Wee PM, Verbrugh HA et al. Icodextrin instead of glucose during the daytime dwell in CCPD increases ultrafiltration and 24-h dialysate creatinine clearance. Nephrol Dial Transplant. 1997;12:550–3.PubMedGoogle Scholar
  217. 217.
    Krediet RT, Imholz ALT, Lameire N, Faict D, Koomen GCM, Martis L. The use of peptides in peritoneal dialysis fluid. Pert Dial Int. 1994;14(Suppl. 3):S152–7.Google Scholar
  218. 218.
    Klein E, Ward RA, Williams TE, Feldhoff PW. Peptides as substitute osmotic agent for glucose in peritoneal dialysis. Trans ASAIO. 1986;32:550–3.Google Scholar
  219. 219.
    Martis L, Burke R, Klein E. Evaluation of a peptide-based solution for peritoneal dialysis. Pert Dial Int. 1993;13 (Suppl. 2):S92–4.Google Scholar
  220. 220.
    Imholz ALT, Lameire N, Faict D, Koomen GCM, Krediet RT, Martis L. Evaluation of short chain polypeptides as osmotic agent in continuous ambulatory peritoneal dialysis patients. Pert Dial Int. 1994;14:215–22.Google Scholar
  221. 221.
    Wang T, Lindholm B. Oligopeptides as osmotic agents in peritoneal dialysis. Pert Dial Int. 1997;17(Suppl. 2):S75–9.Google Scholar
  222. 222.
    Mistry CD, Gokal R. Can ultrafiltration occur with a hyposmolar solution in peritoneal dialysis? The role for ‘colloid’ osmosis. Clin Sci. 1993;85:495–500.PubMedGoogle Scholar
  223. 223.
    Mistry CD, Bhowmick B, Ashman R, Uttley L. Clinical studies of new icodextrin formulations. Pert Dial Int. 1994; 14(Supp1.2):S55–7.Google Scholar
  224. 224.
    Peers E. Icodextrin plus glucose combinations for use in CAPD. Perit Dial Int. 1997;17(Suppl. 2):S68–9.PubMedGoogle Scholar
  225. 225.
    Wang T, Heimburger O, Cheng HH, Bergstrom J, Lindholm B. Peritoneal fluid and solute transport with different polyglucose formulations. Peri Dial Int. 1998;18:193–203.Google Scholar
  226. 226.
    Faller B, Shockley T, Genestier S, Martis 1. Polyglucose and amino acids: preliminary results. Pert Dial Int. 1997; 17(Suppl. 2):S63–7.Google Scholar
  227. 227.
    Marsiglia JC, Cingolani HE, Gonzales NC. Relevance of beta receptor blockade to the negative inotropic effect induced by metabolic acidosis. Cardiovasc Res. 1973;7:336–43.PubMedGoogle Scholar
  228. 228.
    Lemann J Jr, Litzow JR, Lennon EJ. The effect of chronic acid loads in normal man: further evidence for the participation of bone mineral in the defence against chronic metabolic acidosis. J Clin Invest. 1966;45:1608–14.PubMedGoogle Scholar
  229. 229.
    Lefebvre A, de Verneoul MC, Gueris J, Goldfarb B, Graulet AM, Morieux C. Optimal correction of acidosis changes progression of dialysis osteodystrophy. Kidney Int. 1989;36: 1112–18.PubMedGoogle Scholar
  230. 230.
    Papadoyannakis NJ, Stefanides CJ, McGeown M. The effect of the correction of metabolic acidosis on nitrogen and protein balance of patients with chronic renal failure. Am J Clin Nutr. 1984;40:623–7.PubMedGoogle Scholar
  231. 231.
    May RC, Kelly RA, Mitch WE. Metabolic acidosis stimulates protein degradation in rat muscle by a glucocorticoiddependent mechanism. J Clin Invest. 1986;77:614–21.PubMedGoogle Scholar
  232. 232.
    Hara Y, May RC, Kelly RA, Mitch WE. Acidosis, not azotemia, stimulates branched-chain amino acid catabolism in uremic rats. Kidney Int. 1987;32:808–14.PubMedGoogle Scholar
  233. 233.
    Jenkins D, Burton PR, Bennet SE, Baker F, Walls J. The metabolic consequences of the correction of acidosis in uraemia. Nephrol Dial Transplant. 1989;4:92–5.PubMedGoogle Scholar
  234. 234.
    Williams B, Hattersley J, Layward E, Walls J. Metabolic acidosis and skeletal muscle adaptation to low protein diets in chronic uremia. Kidney Int. 1991;40:779–86.PubMedGoogle Scholar
  235. 235.
    Stein A, Baker F, Larratt C et al. Correction of metabolic acidosis and protein catabolic rate in PD patients. Pert Dial Int. 1994;14:187–9.Google Scholar
  236. 236.
    Graham KA, Reaich D, Channon SM et al. Correction of acidosis in CAPD decreases whole body protein degradation. Kidney Int. 1996;49:1396–400.PubMedGoogle Scholar
  237. 237.
    Stein A, Moorhouse J, Iles-Smith H et al. Role of an improvement in acid-base status and nutrition in CAPD patients. Kidney Int. 1997;52:1089–95.PubMedGoogle Scholar
  238. 238.
    Garibotto G, Russo R, Sofia A et al. Skeletal muscle protein synthesis and degradation in patients with chronic renal failure. Kidney Int. 1994;45:1432–9.PubMedGoogle Scholar
  239. 239.
    Bergstrom J, Alvestrand A, Furst P. Plasma and muscle free amino acids in maintenance hemodialysis patients without protein malnutrition. Kidney Int. 1990;38:108–14.PubMedGoogle Scholar
  240. 240.
    Bazilinsky NG, Dunea G, Ing TS. Treatment of metabolic alkalosis in renal failure. Int. J Artif Organs. 1987;10:284–6.Google Scholar
  241. 241.
    Preuss HG. Biochemistry of bicarbonate, lactate and acetate in man. N Med Proc. 1977;1:1–9.Google Scholar
  242. 242.
    Boen ST, Mulinari AS, Dillard DH, Scribner BH. Periodic peritoneal dialysis in the management of chronic uremia. Trans ASAIO. 1962;8:256–62.Google Scholar
  243. 243.
    La Greca G, Biasioli S, Chiaramonte S et al. Acid base balance on peritoneal dialysis. Clin Nephrol. 1981;16:1–7.PubMedGoogle Scholar
  244. 244.
    Faller B, Marichal JF. Loss of ultrafiltration in CAPD: a role for acetate. Pert Dial Bull. 1984;4:10–13.Google Scholar
  245. 245.
    Slingeneyer A, Mion C, Mourad G et al. Progressive sclerosing peritonitis. A late and severe complication of maintenance peritoneal dialysis. Trans ASAIO. 1983;29: 633–6.Google Scholar
  246. 246.
    Feriani M. Adequacy of acid base correction in continuous ambulatory peritoneal dialysis patients. Perit Dial Int. 1994;14(Suppl. 3): S133–8.PubMedGoogle Scholar
  247. 247.
    Brin M. The synthesis and metabolism of lactic acid isomers. Ann NY Acad Sci. 1965;119:942–56.Google Scholar
  248. 248.
    Searle GL, Cavalieri RR. Determination of lactate kinetics in the human analysis of data from single injection. Proc Soc Exp Biol Med. 1972;139:1002–11.PubMedGoogle Scholar
  249. 249.
    Fabris A, Biasioli S, Chiaramonte S et al. Buffer metabolism in CAPD: relationship with respiratory dynamics. Trans ASAIO. 1982;28:270–5.Google Scholar
  250. 250.
    Teehan BP, Schleifer CR, Reichard GA, Cupit MC, Sigler MH, Haff AC. Acid base studies in continuous ambulatory peritoneal dialysis. In: Moncrief JW, Popovich RP, editors. CAPD Update. New York: Masson, 1981:95–102.Google Scholar
  251. 251.
    Richardson RMA, Roscoe JM. Bicarboante, L-lactate and D-lactate balance in intermittent peritoneal dialysis. Perit Dial Bull. 1986;6:178–85.Google Scholar
  252. 252.
    Nolph KD, Twardowski ZJ, Khanna R et al. Tidal peritoneal dialysis with racemic or L-lactate solutions. Perit Dial Int. 1990;10:161–4.PubMedGoogle Scholar
  253. 253.
    Rubin J, Adair C, Johnson B, Bower JD. Stereospecific lactate absorption during peritoneal dialysis. Nephron. 1982;31:224–8.PubMedGoogle Scholar
  254. 254.
    Fine A. Metabolism of D-lactate in the dog and in man. Pert Dial Int. 1989;9:99–101.Google Scholar
  255. 255.
    Chan L, Slater J, Hasbargen J, Herndon DN, Veech RL, Wolf S. Neurocardiac toxicity of racemic D,L-lactate fluids. Integr Physiol Behav Sci. 1994;29:383–94.PubMedGoogle Scholar
  256. 256.
    Anderson YS, Curtis NJ, Hobbs AR et al. High serum D-lactate in patients on continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant. 1997;12:981–3.PubMedGoogle Scholar
  257. 257.
    Thurn JR, Pierpont GL, Ludvigsen CW, Eckfeldt JH. D-lactate encephalopathy. Am J Med. 1985;79:717–21.PubMedGoogle Scholar
  258. 258.
    Feriani M, Biasioli S, Borin D, La Greca G. Bicarbonate buffer for CAPD solution. Trans ASAIO. 1985;31:668–75.Google Scholar
  259. 259.
    Feriani M, Ronco C, La Greca G. Acid base balance with different CAPD solutions. Pert Dial Int. 1996;16(Suppl. 1): S126–9.Google Scholar
  260. 260.
    Uribarri J, Buquing J, Oh MS. Acid-base balance in chronic peritoneal dialysis patients. Kidney Int. 1995;47:269–73.PubMedGoogle Scholar
  261. 261.
    Veech RL. The untoward effects of the anions of dialysis fluid. Kidney Int. 1988;34:587–97.PubMedGoogle Scholar
  262. 262.
    Nissenson AR. Acid base homeostasis in peritoneal dialysis patients. Int J Artif Organs. 1984;7:175–6.PubMedGoogle Scholar
  263. 263.
    Feriani M. Buffers: bicarbonate, lactate and pyruvate. Kidney Int. 1996;50(Suppl. 56):S75–80.Google Scholar
  264. 264.
    Gennari FJ, Cohen JJ, Kassirer JP. Normal acid base values. In: Cohen JJ, Kassirer JP, editors. Acid/Base. Boston: Little, Brown, 1982:107–10.Google Scholar
  265. 265.
    Yamamoto T, Sakakura T, Yamakawa M et al. Clinical effects of long-term use of neutralized dialysate for continuous ambulatory peritoneal dialysis. Nephron. 1992; 60:324–9.PubMedGoogle Scholar
  266. 266.
    Frohlich ED. Vascular effects of the Krebs intermediate metabolites. Am J Physiol. 1965;208:149–56.PubMedGoogle Scholar
  267. 267.
    Kirkendol PL, Devia CJ, Bower JD et al. Comparison of the cardiovascular effects of sodium acetate, sodium bicarbonate and other potential sources of fixed base in hemodialysis solutions. Trans ASAIO. 1977;23:399–404.Google Scholar
  268. 268.
    Veech RL. The toxix impact of parenteral solutions on the metabolism of cells: a hypothesis for physiological parenteral therapy. Am J Clin Nutr. 1986;44:519–51.PubMedGoogle Scholar
  269. 269.
    Sistare FD, Haynes RC. The interaction between the cytosolic pyridine nucleotide redox potential and gluconeogenesis from lactate/pyruvate in isolated rat hepatocytes. J Biol Chem. 1985;23:12748–53.Google Scholar
  270. 270.
    Oh MS, Phelpo KR, Traube M et al. D-lactic acidosis in a man with the short bowel syndrome. N Engl J Med. 1979; 301:249–52.PubMedGoogle Scholar
  271. 271.
    Veech RL, Fowler RC. Cerebral dysfunction and respiratory alkalosis during peritoneal dialysis with D-lactate containing dialysis fluid. Am J Med. 1986;82:572–3.Google Scholar
  272. 272.
    Ing TS, Quon MJ, Daugirdas JT, Ghandi VC, Epstain MB. Preparation of bicarbonate containing peritoneal dialysate using an automated dialysate delivery system. Int J Artif Organs. 1981;4:148–9.PubMedGoogle Scholar
  273. 273.
    Ing TS, Quon MJ, Daugirdas JT, Liu P, Gandhi VC, Reid RR. On line preparation of bicarbonate containing dialysate for use in peritoneal dialysis. Int J Artif Organs. 1981;4:308–9.PubMedGoogle Scholar
  274. 274.
    Ing TS, Humayun HM, Daugirdas JT et al. Preparation of bicarbonate-containing dialysate for peritoneal dialysis. Int J Artif Organs. 1983:6;217–18.PubMedGoogle Scholar
  275. 275.
    Ing TS, Ghandi VC, Daugirdas JT, Reid RW, Hunt J, Popli S. Peritoneal dialysis using bicarbonate buffered dialysate. Int J Artif Organs. 1984;7:166–8.PubMedGoogle Scholar
  276. 276.
    Feriani M, La Greca G. CAPD with bicarbonate solution. In: Horl WH, Schollmeyer PJ, editors. New Perspectives in Hemodialysis, Peritoneal Dialysis, Arterovenous Hemofiltration and Plasmaferesis. New York: Plenum, 1989:139–47.Google Scholar
  277. 277.
    Feriani M, Reinhard B, La Greca G. Calcium carbonate precipitation in oversatured bicarbonate containing CAPD solutions. In: La Greca G, Ronco C, Feriani M, Chiaramonte S, Conz P, editors. Peritoneal Dialysis. Milan: Wichtig Editore, 1991:145–51.Google Scholar
  278. 278.
    Gretz N, Kraft E, Meisinger E, Lasserre J, Strauch M. Calcium deposits due to bicarbonate containing CAPD solutions? In: Khanna R, Nolph KD, Prowant BF, Twardowski ZJ, Oreopoulos DG, editors. Advances in Peritoneal Dialysis. Toronto: Peritoneal Dialysis Bulletin Inc., 1988:220–3.Google Scholar
  279. 279.
    Feriani M, Biasioli S, Barbacini S et al. Acid base correction in bicarbonate CAPD patients. In: Khanna R, Nolph KD, Prowant BF, Twardowski ZJ, Oreopoulos DG, editors. Advances in Peritoneal Dialysis. Toronto: Peritoneal Dialysis Bulletin Inc., 1989:191–4.Google Scholar
  280. 280.
    Feriani M, Passlick-Deetjen J, La Greca G. Factors affecting bicarbonate transfer with bicarbonate-containing CAPD solution. Pert Dial Int. 1995;15:336–41.Google Scholar
  281. 281.
    Feriani M, Dissegna D, La Greca G, Passlick-Deetjen J. Short term clinical study with bicarbonate containing peritoneal dialysis solution. Perit Dial Int. 1993;13:296–301.PubMedGoogle Scholar
  282. 282.
    Feriani M, Kirchgessner J, La Greca G, Passlick-Deetjen J, and the Bicarbonate CAPD Cooperative Group. A randomized multicenter long-term clinical study comparing a bicarbonate buffered CAPD solution with the standard lactate buffered CAPD solution. Kidney Int. 1998;54: 1731–5.PubMedGoogle Scholar
  283. 283.
    Feriani M, Carobi C, La Greca G, Buoncristiani U, Passlick Deetjen J. Clinical experiences with a bicarbonate buffered (39 mmol/L) peritoneal dialysis solution. Pert Dial Int. 1997;17:17–21.Google Scholar
  284. 284.
    Ryckelynck JP, Feriani M, Passlick-Deetjen J, JaeckleMeyer I. PD patients — need for bicarbonate (Bic): 34 vs 39 mmol/lBic containing PD solutions. Nephrol Dial Transplant. 1998;13:A236 (abstract).Google Scholar
  285. 285.
    Yatzidis H. A new stable bicarbonate dialysis solution for peritoneal dialysis: preliminary report. Perit Dial Int. 1991; 11:224–7.PubMedGoogle Scholar
  286. 286.
    Slingeneyer A, Faller B, Michel C, Przbylski C, Rolland R, Mion C: Increased ultrafiltration capacity using a new bicarbonate CAPD solution. Pert Dial Int. 1993;13(Suppl. 1): S57 (abstract).Google Scholar
  287. 287.
    Slingeneyer A, Przybylski C, Rolland R, Mion C. A new bicarbonate buffered solution for CAPD. Perit Dial Int. 1993;13(Suppl. 1):S57.Google Scholar
  288. 288.
    Schambye HT, Flesner P, Pedersen RB et al. Bicarbonate versus lactate-based CAPD fluids: a biocompatibility study in rabbits. Pert Dial Int. 1992;12:281–6.Google Scholar
  289. 289.
    Coles GA, Gokal R, Ogg C et al. A randomized controlled trial of a bicarbonate and a bicarbonate/lactate containing dialysis solution in CAPD. Pert Dial Int. 1997;17: 48–51.Google Scholar
  290. 290.
    Traneus A for the Bicarbonate/Lactate study group. A longterm study of a bicarbonate/lactate-based peritoneal dialysis solution. Clinical benefit. Pert Dial Int. 2000;20:516–23.Google Scholar
  291. 291.
    Mactier RA, Sprosen TS, Gokal R et al. Bicarbonate and bicarbonate/lactate peritoneal dialysis solutions for the treatment of infusion pain. Kidney Int. 1998;53:1061–5.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Mariano Feriani
  • Claudio Ronco
  • Giuseppe La Greca

There are no affiliations available

Personalised recommendations