Skip to main content

Machines for automated peritoneal dialysis

  • Chapter
  • 598 Accesses

Abstract

Automated peritoneal dialysis (APD) is the fastestgrowing dialysis treatment in the world at the present time. The evolution of this treatment modality is closely linked to the development of new automatic machines and to the recent advances in prescription and monitoring of peritonal dialysis (PD) treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Diaz-Buxo JA, Suki WN. Automated peritoneal dialysis. In: Gokal R, Nolph KD, editors. The Textbook of Peritoneal Dialysis. Dordrecht: Kluwer, 1994;399–418.

    Chapter  Google Scholar 

  2. Popovich RP, Moncrief JW, Nolph KD, Ghods AJ, Twardowski ZJ, Pyle WK. Continuous ambulatory peritoneal dialysis. Ann Intern Med. 1978;88:449–56.

    Article  PubMed  CAS  Google Scholar 

  3. Diaz-Buxo JA, Farmer CD, Walker PJ, Chandler JT, Holt KL. Continuous cyclic peritoneal dialysis: a preliminary report. Artif Organs. 1981;5:157–61.

    Article  PubMed  CAS  Google Scholar 

  4. Price CG, Suki WN. Newer modifications of peritoneal dialysis: options in the treatment of patients with renal failure. Am J Nephrol. 1981;1:97–104.

    Article  PubMed  CAS  Google Scholar 

  5. McComb J, Morton AR, Singer MA, Hopman WM, MacKenzie T. Impact of portable APD on patient perception of health-related quality of life. Adv Perit Dial. 1997; 13:137–40.

    PubMed  CAS  Google Scholar 

  6. US Renal Data System, CD ROM version 1997.

    Google Scholar 

  7. Twardowski ZJ. Peritoneal dialysis glossary II. Pert Dial Int. 1988;8:15–17.

    Google Scholar 

  8. Durand PY, Slingeneyer A, Benevent D, Chanliau J. CAPD: peritoneal clearances with a 5th nocturnal automated exchange (Baxter Quantum). Perit Dial Int. 1997;17(Suppl. 1): 515 (abstract).

    Google Scholar 

  9. Blake P, Burkart JM, Churchill DN et al. Recommended clinical practices for maximizing peritoneal dialysis clearances. Pert Dial Int. 1996;16:448–56.

    CAS  Google Scholar 

  10. Keshaviah P, Emerson PF, Vonesh EF, Brandes JC. Relationship between body size, fill volume, and mass transfer area coefficient in peritoneal dialysis. J Am Soc Nephrol. 1994;4:1820–6.

    PubMed  CAS  Google Scholar 

  11. Durand PY, Chanliau J, Gamberoni J, Hestin D, Kessler M. APD: clinical measurement of the maximal acceptable intraperitoneal volume. Adv Pert Dial. 1994;10:63–7.

    CAS  Google Scholar 

  12. Twardowski ZJ, Nolph KD, Khanna R et al. Peritoneal equilibration test. Pert Dial Bull. 1987;7:138–47.

    Google Scholar 

  13. Twardowski ZJ. Clinical value of standardised tests in CAPD patients. Blood Purif. 1989;7:95–108.

    Article  PubMed  CAS  Google Scholar 

  14. Durand PY, Freida P, Issad B, Chanliau J. How to reach optimal creatinine clearance in automated peritoneal dialysis. Pert Dial Int. 1996;16(Suppl. 1):S167–70.

    Google Scholar 

  15. Ronco C, Amici G, Feriani M, Virga G. Automated peritoneal dialysis. Contrib Nephrol. Karger Basel. 1999:129.

    Google Scholar 

  16. Amici GP, Virga GB, Ronco C. Automated peritoneal dialysis: when and to do it. Proceedings of the ISPD ′98. The VIII Congress of the ISPD, August 23/26 1998 Seoul, Korea. Peritoneal Dialysis International 1999;19(2):117–22.

    Google Scholar 

  17. Holley JL, Piraino B. Careful patient selection and dialysis prescription are required for effective nightly intermittent peritoneal dialysis. Perit Dial Int. 1994;14:155–8.

    PubMed  CAS  Google Scholar 

  18. Friedlander MA, Rahman M, Tessman MJ, Hanslik TM, Ferrara KA, Newman LN. Variability in calculations of dialysis adequacy in patients using nightly intermittent peritoneal dialysis compared to CAPD. Adv Pert Dial. 1995;11:93–6.

    CAS  Google Scholar 

  19. Piraino B, Bender F, Bernardini J. A comparison of clearances on tidal peritoneal dialysis and intermittent peritoneal dialysis. Perit Dial Int. 1994;14:145–8.

    PubMed  CAS  Google Scholar 

  20. Steinhauer HB, Keck I, Lubrich-Birkner I, Schollmeyer P. Increased dialysis efficiency in tidal peritoneal dialysis compared to intermittent peritoneal dialysis. Nephron. 1991;58:500–1.

    Article  PubMed  CAS  Google Scholar 

  21. Flanigan MJ, Doyle C, Lim VS, Ullrich G. Tidal peritoneal dialysis: preliminary experience. Pert Dial Int. 1992;12: 304–8.

    CAS  Google Scholar 

  22. Brandes JC, Packard WJ, Watters SK, Fritsche C. Optimization of dialysate flow and mass transfer during automated peritoneal dialysis. Am J Kidney Dis. 1995;25:603–10.

    Article  PubMed  CAS  Google Scholar 

  23. Twardowski ZJ, Prowant BF, Nolph KD, Martinez AJ, Lampton LM. High volume, low frequency continuous ambulatory peritoneal dialysis. Kidney Int. 1983;23:64–70.

    Article  PubMed  CAS  Google Scholar 

  24. Freida PH, Issad B, Allouache M. Relationships between fill volume, small solute clearances, and net ultrafiltration during a standardized APD program. Pert Dial Int. 1998; 18:124 (abstract).

    Google Scholar 

  25. National Kidney Foundation. Computer-Assisted Kinetic Modeling Approach to Achieving Target Doses of Peritoneal Dialysis. NKF-DOQI clinical practice guidelines for peritoneal dialysis adequacy. Am J Kidney Dis. 1997; 30(3 Suppl. 2):S90–2.

    Google Scholar 

  26. Vonesh EF, Lysaght MJ, Moran J, Farrell P. Kinetic modeling as a prescription aid in peritoneal dialysis. Blood Purif. 1991;9:246–70.

    Article  PubMed  CAS  Google Scholar 

  27. Vonesh EF, Burkart J, McMurray SD, Williams PF. Peritoneal dialysis kinetic modeling: validation in a multicenter clinical study. Pert Dial Int. 1996;16:471–81.

    CAS  Google Scholar 

  28. Rippe B, Stelin G, Haraldsson B. Computer simulations of peritoneal fluid transport in CAPD. Kidney Int. 1991;40:315–25.

    Article  PubMed  CAS  Google Scholar 

  29. Haraldsson B. Assessing the peritoneal dialysis capacities of individual patients. Kidney Int. 1995;47:1187–98.

    Article  PubMed  CAS  Google Scholar 

  30. Gotch FA, Keen ML. Kinetic modeling in peritoneal dialysis. In: Nissenson AR, Fine RN, Gentile DE, editors. Clinical Dialysis, 3rd edn. Norwalk: Appleton & Lange, 1996:343–75.

    Google Scholar 

  31. Gotch FA, Lipps BJ, Keen ML, Panlilio F. Computerized urea kinetic modeling to prescribe and monitor delivered Kt/V (pKt/V, dKt/V) in peritoneal dialysis. Adv Perit Dial. 1996;12:43–5.

    PubMed  CAS  Google Scholar 

  32. Amici G, Mastrosimone S, Da Rin G, Bocci C. Bonadonna A. Clinical validation of PD Adequest software: modeling error assessment. Pert Dial Int. 1998;18:317–21.

    CAS  Google Scholar 

  33. Verrina E, Amici G, Perfumo F, Trivelli A, Canepa A, Gusmano R. The use of the PD Adequest mathematical model in pediatric patients on chronic peritoneal dialysis. Perit Dial Int. 1998;18:322–8.

    PubMed  CAS  Google Scholar 

  34. Keshaviah PR, Nolph KD, Van Stone JC. The peak urea concentration hypothesis: a urea kinetic approach to comparing the adequacy of CAPD and hemodialysis. Pert Dial Int. 1989;9:257–60.

    CAS  Google Scholar 

  35. National Kidney Foundation. III. Measurement of peritoneal dialysis dose. NKF-DOQI clinical practice guidelines for peritoneal dialysis adequacy. Am J Kidney Dis. 1997; 30(3 Suppl. 2):S80–2.

    Google Scholar 

  36. National Kidney Foundation. V. Adequate dose of peritoneal dialysis. NKF-DOQI clinical practice guidelines for peritoneal dialysis adequacy. Am J Kidney Dis. 1997; 30(3 Suppl. 2):S86–92.

    Article  Google Scholar 

  37. Keshaviah PR, Star RA. A new approach to dialysis quantification: an adequacy index based on solute removal. Semin Dial. 1994;7:85–90.

    Article  Google Scholar 

  38. Keshaviah PR. The solute removal index — a unified basis for comparing disparate therapies. Perit Dial Int. 1995;15: 101–4.

    PubMed  CAS  Google Scholar 

  39. Ronco C, Bosch JP, Lew SQ et al. Adequacy of continuous ambulatory peritoneal dialysis: comparison with other dialysis techniques. Kidney Int. 1994;46(Suppl. 48):S18–24.

    Google Scholar 

  40. Amici G, Calzavara P, Da Rin G, Bocci C, Calconi G. Solute removal index (SRI) and equivalent renal clearance (EKR) for dialysis dose quantification in CAPD, APD and standard HD. Pert Dial Int. 1998;18(Suppl. 1):S11 (abstract).

    Google Scholar 

  41. Canaud B, Garred LJ, Argiles A, Flavier JL, Bouloux C, Mion C. Creatinine kinetic modelling: a simple and reliable tool for the asessment of protein nutritional status in haemodialysis patients. Nephrol Dial Transplant. 1995;10: 1405–10.

    PubMed  CAS  Google Scholar 

  42. Amici G, Virga G, Da Rin G, Bocci C. KtIV target calculation in automated tidal PD treatment using solute removal index. Pert Dial Int. 1998;18:101 (abstract).

    Google Scholar 

  43. Chen HH, Shetty A, Afthentopoulos IE, Oreopulos DG. Discrepancy between weekly Kt/V and weekly creatinine clearances in patients on CAPD. Adv Pert Dial. 1995;11: 83–7.

    CAS  Google Scholar 

  44. Tzamaloukas AH, Murata GH, Piraino B et al. Peritoneal urea and creatinine clearance in continuous peritoneal dialysis patients with different types of peritoneal solute transport. Kidney Int. 1998;53:1405–11.

    Article  PubMed  CAS  Google Scholar 

  45. Mehrotra R, Saran R, Nolph KD, Moore HL, Khanna R. Evidence that urea is a better surrogate marker of uremic toxicity than creatinine. ASAIO J. 1997;43:M858–61.

    Article  PubMed  CAS  Google Scholar 

  46. Amici G, Mastrosimone S, Virga G, Da Rin G, Bocci C. Variability of adequacy indices derived from 24 h collections in APD. Pert Dial Int. 1998;18:101 (abstract).

    Google Scholar 

  47. Rodby RA, Firanek CA, Cheng YG, Korbet SM. Reproducibility of studies of peritoneal dialysis adequacy. Kidney Int. 1996;50:267–71.

    Article  PubMed  CAS  Google Scholar 

  48. Churchill DN, Taylor DW, Keshaviah PR. Adequacy of dialysis and nutrition in continuous peritoneal dialysis: association with clinical outcomes. J Am Soc Nephrol. 1996;7:198–207.

    Google Scholar 

  49. Diaz-Buxo JA. Enhancement of peritoneal dialysis: the PD plus concept. Am J Kidney Dis. 1996;27:92–8.

    Article  PubMed  CAS  Google Scholar 

  50. Korbet SM, Vonesh EF, Firanek CA. Peritonitis in an urban peritoneal dialysis program: an analysis of infecting pathogens. Am J Kidney Dis. 1995;26:47–53.

    Article  PubMed  CAS  Google Scholar 

  51. Vande Walle J, Raes A, Castillo D, Lutz-Dettinger N, Dejaegher A. Advantages of HCO3 solution with low sodium concentration over standard lactate solutions for acute peritoneal dialysis. Adv Pert Dial. 1997;13:179–82.

    Google Scholar 

  52. Struijk DG, Douma CE. Future research in peritoneal dialysis fluids. Semin Dial. 1998;11:207–12.

    Article  Google Scholar 

  53. Canepa A, Perfumo F, Carrea A et al. Long-term effects of amino acid solutions in children on automated peritoneal dialysis. J Am Soc Nephrol. 1996;7:1441 (abstract).

    Google Scholar 

  54. Leblanc M, Moreno L, Robinson O, Tapolyai M, Paganini EP. Bicarbonate dialysate for continuous renal replacement therapy. J Am Soc Nephrol. 1995;6:497 (abstract).

    Google Scholar 

  55. Ash SR, Janle EM. Continuous flow-through peritoneal dialysis (CFPD): comparison of efficiency to IPD, TPD, and CAPD in an animal model. Pert Dial Int. 1997;17: 365–72.

    CAS  Google Scholar 

  56. Steele M, Kwan JT. Potential problem: delayed detection of peritonitis by patients receiving home automated peritoneal dialysis. Pert Dial Int. 1997;17:617.

    CAS  Google Scholar 

  57. Ronco C, Brendolan A, Zanella M. Evolution of machines for automated peritoneal dialysis. Contrib Nephrol. 1999;129:142–61.

    Article  PubMed  CAS  Google Scholar 

  58. Ronco C, Diaz-Buxo JA. Automated peritoneal dialysis. Nephron 2001;87:1–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ronco, C., Feriani, M., Dell’Aquila, R. (2004). Machines for automated peritoneal dialysis. In: Hörl, W.H., Koch, K.M., Lindsay, R.M., Ronco, C., Winchester, J.F. (eds) Replacement of Renal Function by Dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2275-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2275-3_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-7012-1

  • Online ISBN: 978-1-4020-2275-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics