Skip to main content

Hemodialyzers and related devices

  • Chapter
Replacement of Renal Function by Dialysis

Abstract

Hemodialysis has evolved from an experimental procedure to a widely used life-sustaining method. It is a membrane separation process in which waste products and water retained as a consequence of renal insufficiency are removed by diffusion across a semipermeable membrane into an electrolyte solution (dialysis fluid). The origins of this treatment may be traced to the middle of the 19th century, at which time theoretical concepts of diffusion were practically applied to a variety of procedures ranging from the purification of colloids to the measurement of hydrogen ions in the blood (1). The concept of dialysis applied to blood is credited to John J. Abel at Baltimore, who explained how and why blood could be cleansed of urea and other metabolites by the use of a collodion membrane, and designed the apparatus for carrying it out. Abel understood that the kidney functioned by diffusion and discerned that dialysis could be used as an emergency kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fagette P. Hemodialysis 1912–1945: no medical technology before its time — Part I. ASAIO J. 1999;45:238–49.

    Article  PubMed  CAS  Google Scholar 

  2. Wizemann V, Ritz E. Georg Haas: a forgotten pioneer of haemodialysis. Nephrology. 1998;4:229–34.

    Article  Google Scholar 

  3. Akizawa T, Kinugasa E, Ideura T. Classification of dialysis membranes by performance. Contrib Nephrol. 1995;113: 25–31.

    PubMed  CAS  Google Scholar 

  4. Nensel U, Rockel A, Hillenbrand T, Bartel J. Dialyzer permeability for low-molecular-weight proteins. Comparison between polysulfone, polyamide and cuprammonium-rayon dialyzers. Blood Purif. 1994;12:128–34.

    Article  PubMed  CAS  Google Scholar 

  5. Maxvold NJ, Smoyer WE, Custer JR, Bunchman TE. Amino acid loss and nitrogen balance in critically ill children with acute renal failure: a prospective comparison between classic hemofiltration and hemofiltration with dialysis. Crit Care Med. 2000, 28:1161–5.

    Article  PubMed  CAS  Google Scholar 

  6. Urena P, Herbelin A, Zingraff J et al. Permeability of cellulosic and non-cellulosic membranes to endotoxin subunits and cytokine production during in-vitro haemodialysis. Nephrol Dial Transplant. 1992;7:16–28.

    PubMed  CAS  Google Scholar 

  7. Hakim RM. Endotoxin transfer during dialysis: less than meets the eye? J Lab Clin Med. 1994;124:742–3.

    PubMed  CAS  Google Scholar 

  8. Lonnemann G. Chronic inflammation in hemodialysis: the role of contaminated dialysate. Blood Purif. 2000;18:214–23.

    Article  PubMed  CAS  Google Scholar 

  9. Abel JJ, Rowntree LG, Turner BB. On the removal of diffusible substances from the circulating blood by dialysis. Trans Am Assoc Phys. 1913;58:51–4.

    Google Scholar 

  10. Kolff WJ, Berk HTHJ, Tere Welle M, van der Leg JW, van Dijk EC, van Noordwijk J. The artificial kidney: a dialyser with great area. Acta Med Scand. 1944;117; 121–34 (republished in Milestones in nephrology. J Am Soc Nephrol. 1997;8:1959–1965 with comments by the author and FG Gotch).

    Google Scholar 

  11. McBride PT. Genesis of the Artificial Kidney, 2nd edn. Baxter Healthcare Corporation, 1987.

    Google Scholar 

  12. Skeggs LT Jr, Leonards JR. Studies on an artificial kidney. Preliminary results with a new type of continuous dialyzer. Science. 1948;108:212–13.

    Article  PubMed  CAS  Google Scholar 

  13. Kiil F. (Amundsen B). Development of a parallel flow artificial kidney in plastics. Acta Chir Scand. 1960 (Suppl.)253:142.

    Google Scholar 

  14. Bluemle LW Jr, Dickson JG, Mitchell J Jr, Podolnick MS. Permeability and hydrodynamic studies on the McNeill Collins dialyzer using conventional and modified membrane supports. Trans Am Soc Artif Int Organs. 1960;6:38.

    Google Scholar 

  15. Von Hartitzsch B, Hoenich NA. Meltec Multipoint haemodialyser. Br Med J. 1972;1:237–9.

    Article  Google Scholar 

  16. Allen R, Frost TH, Hoenich NA. The influence of dialysate flow rate on hollow fibre hemodialyzer performance. Artif Organs. 1995;19:1176–80.

    Article  PubMed  CAS  Google Scholar 

  17. Clark WR, Shinaberger JH. Effect of dialysate-side mass transfer resistance on small solute removal in hemodialysis. Blood Purif. 2000;18:260–3.

    Article  PubMed  CAS  Google Scholar 

  18. Akizawa T, Kinugasa E, Sato Y et al. Development of a new cellulose triacetate membrane with a microgradient porous structure for hemodialysis. ASAIO J. 1998;44: M584–6.

    Article  PubMed  CAS  Google Scholar 

  19. Babb AL, Popovich RP, Christopher TG, Scribner BH. The genesis of the square meter-hour hypothesis. Trans Am Soc Artif Intern Organs. 1971;17:81–91.

    PubMed  CAS  Google Scholar 

  20. Alwall N. Historical perspective on the development of the artificial kidney. Artif Organs. 1986;10:86–99.

    Article  PubMed  CAS  Google Scholar 

  21. Sigdell JE. Operating characteristics of hollow-fiber dialyzers. In: Nissenson AR, Fine RN, Gentile DE, editors. Clinical Dialysis, 2nd edn. Connecticut: Appleton & Lange, 1990:97–117.

    Google Scholar 

  22. Babb AL, Grimsrud L, Bell RL, Layno SB. Engineering aspects of artificial kidney systems. In: Hershey D, editor. Chemical Engineering in Medicine and Biology. New York: Plenum Press, 1967:289–331.

    Google Scholar 

  23. McDougall IC. Should the hematocrit be normalized in dialysis and pre ESRD patients. Blood Purif. 2001;19: 157–67.

    Article  Google Scholar 

  24. Charm S, Kurland G. Viscometry of human blood for shear rates 0–100,000 sec1. Nature. 1965;206:617–18.

    Article  PubMed  CAS  Google Scholar 

  25. Pallone TL, Hyver S, Petersen J. The simulation of continuous arteriovenous hemodialysis with a mathematical model. Kidney Int. 1989;35:125–33.

    Article  PubMed  CAS  Google Scholar 

  26. Pallone TL, Petersen J. Continuous arteriovenous hemofiltration: an in vitro simulation and mathematical model. Kidney Int. 1988;33:685–98.

    Article  PubMed  CAS  Google Scholar 

  27. Sigdell JE. A Mathematical Theory for the Capillary Artificial Kidney, Stuttgart: Hippokrates Verlag, 1974.

    Google Scholar 

  28. Elmore S, Lipscomb GG. Analytical approximations of the effect of hollow fibre size distribution on the performance of hollow fibre membrane separation devices. J Membrane Sci. 1995;98:49–56.

    Article  CAS  Google Scholar 

  29. Lindsay RM, Leypoldt JK. Monitoring vascular access flow. Adv Renal Replace Ther. 1999;6:273–7.

    CAS  Google Scholar 

  30. Sigdell JE, Tersteegen B. Clearance for a dialyzer under varying operating conditions. Artif Organs. 1986;10: 219–25.

    Article  PubMed  CAS  Google Scholar 

  31. Morcos AWB, Nissenson AR. Erythropoietin and highefficiency dialysis. In: Bosch JP, editor. Contemporary Issues in Nephrology, 27 — Hemodialysis High-Efficiency Treatments. New York: Churchill Livingstone, 1993:151–73.

    Google Scholar 

  32. Schmidt B, Ward RA. The impact of erythropoietin on hemodialyzer design and performance. Artif Organs. 1989;13:35–42.

    Article  PubMed  CAS  Google Scholar 

  33. Leblanc M, Charbonneau R, Lalumiere G, Cartier P, Deziel C. Postdialysis urea rebound: determinants and influence on dialysis delivery in chronic hemodialysis patients. Am J Kidney Dis. 1996;27:253–61.

    Article  PubMed  CAS  Google Scholar 

  34. Owen WF Jr, Meyer KB, Schmidt G, Alfred H. Methodological limitations of the ESRD Core Indicators Project: an ESRD network’s experience with implementing an ESRD quality survey. Medical Review Board of the ESRD Network of New England. Am J Kidney Dis. 1997;30: 349–55.

    Article  PubMed  Google Scholar 

  35. Granger A, Vantard G, Vantelon J, Perrone B. A mathematical approach of simultaneous dialysis and ultrafiltration (SDF) ESAO Proc. 1978:174–7.

    Google Scholar 

  36. Ghezzi PM, Sanz-Moreno C, Gervasio R, Nigrelli S, Botella J. Technical requirements for rapid high-efficiency therapy in uremic patients. Paired filtration-dialysis (PFD) with a two-chamber technique. ASAIO Trans. 1987;33:546–50.

    PubMed  CAS  Google Scholar 

  37. Villarroel F, Klein E, Holland F. Solute flux in hemodialysis and hemofiltration membranes. Trans Am Soc Artif Intern Organs. 1971;23:225–33.

    Article  Google Scholar 

  38. Jaffrin MY, Ding L, Laurent JM. Simultaneous convective and diffusive mass transfers in a hemodialyser. Trans ASME J Biomech Eng. 1990;112:212–19.

    Article  CAS  Google Scholar 

  39. Spiegler KS, Kedem O. Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes. Desalination. 1966;1:311.

    Article  CAS  Google Scholar 

  40. Lysaght MJ, Ford CA, Colton CK, Stone RA, Henderson LW. Mass transfer in clinical blood ultrafiltration devices — a review. In: Frost TH, editor. Technical Aspects of Renal Dialysis. Tunbridge Wells: Pitman, 1977:81–95.

    Google Scholar 

  41. Ronco C. Back filtration in clinical dialysis: nature of the phenomenon, mechanisms and possible solutions. Int J Artif Organs. 1990;13:11–21.

    PubMed  CAS  Google Scholar 

  42. Ofsthun NJ, Leypoldt JK. Ultrafiltration and backfiltration during hemodialysis. Artif Organs. 1995;19:1143–61.

    Article  PubMed  CAS  Google Scholar 

  43. Lonemann G, Behme TC, Lenzner B et al. Permeability of dialyzer membranes to TNF alpha inducing substances derived from water bacteria. Kidney Int. 1992;42:61–8.

    Article  Google Scholar 

  44. Evans RC, Holmes CJ. In vitro study of the transfer of cytokine inducing substances across selected high flux hemodialysis membranes. Blood Purif. 1991;9:92–101.

    Article  PubMed  CAS  Google Scholar 

  45. Laude Sharp M, Caroff M, Simard L, Pusineri C, Kazatchkine MD, Haeffner-Cavallion N. Induction of IL-1 during hemodialysis: transmembrane passage of intact endotoxins (LPS). Kidney Int. 1990;38:1089–94.

    Article  Google Scholar 

  46. Lonnemann G, Linnenweber S, Burg M, Koch KM. Transfer of endogenous pyrogens across artificial membranes? Kidney Int. 1998 (Suppl. 66):S43–6.

    Google Scholar 

  47. Scott MK, Mueller BA, Sowinski KM, Clark WR. Dialyzerdependent changes in solute and water permeability with bleach reprocessing. Am J Kidney Dis. 1999;33:87–96.

    Article  PubMed  CAS  Google Scholar 

  48. Okazaki M, Yoshida F. Ultrafiltration of blood: effect of hematocrit on ultrafiltration rate. Ann Biomed Eng. 1976;4:138–50.

    Article  PubMed  CAS  Google Scholar 

  49. Ofsthun NJ, Jensen JC, Kay M. Effect of high haematocrit and high blood flow rates on transmembrane pressure and ultrafiltration rate in hemodialysis. Blood Purif. 1991;9: 169–76.

    Article  PubMed  CAS  Google Scholar 

  50. Robertson BC, Curtin C. Effects of EPO therapy on backfiltration of dialysate in high flux dialysis. ASAIO Trans. 1990;36:M447–52.

    PubMed  CAS  Google Scholar 

  51. Fernandez CA, Saidel GM, Malchesky PS, Zborowski M. A mechanistic model of plasma filtration. Med Eng Phys. 1998;20:383–92.

    Article  PubMed  CAS  Google Scholar 

  52. Hoenich NA, Woffindin C, Brennan A, Cox PJ, Matthews JNS, Goldfinch M. A comparison of three brands of polysulfone membranes. J Am Soc Nephrol. 1996;7:871–6.

    PubMed  CAS  Google Scholar 

  53. Leypoldt JK. Solute fluxes in different treatment modalities. Nephrol Dial Transplant. 2000;15(Suppl. 1):3–9.

    Article  PubMed  CAS  Google Scholar 

  54. Gunnarsson B, Asaba H, Bergstrom J, Kiibus A, Soderborg B. Application of gamma camera technique for hemodynamic study of parallel flow dialyzers. Artif Organs. 1980;4:201–5.

    Article  PubMed  CAS  Google Scholar 

  55. Brendolan A, Ronco C, Ghezzi PM, Scabardi M, La Greca G. Hydraulic and flow dynamic characteristics of PMMA dialyzers. Contrib Nephrol. 1998;125:41–52.

    Article  Google Scholar 

  56. Levenspiel O, Smith WK. Notes on the diffusion type model for the longitudinal mixing of fluids in flow. Chem Eng Sci. 1995;50:3891–6.

    Article  CAS  Google Scholar 

  57. Craddock P, Fehr J, Dalmasso A, Brigham K, Jacog H. Hemodialysis leukopenia: pulmonary vascular leukostasis resulting from complement activation by dialyser cellophane membranes. J Clin Invest. 1977;59:879–88.

    Article  PubMed  CAS  Google Scholar 

  58. Kaplow LS, Goffinet JA. Profound neutropenia during early phase of hemodialysis. J Am Med Assoc. 1968;203:1135–7.

    Article  CAS  Google Scholar 

  59. Pascual M, Tolkoff-Rubin N, Schifferli JA. Is adsorption an important characteristic of dialysis membranes? Kidney Int. 1996;49:309–13.

    Article  PubMed  CAS  Google Scholar 

  60. Skroeder NR, Kjellstrand P, Holmquist B, Nilsson U, Jacobson SH. Increased amounts of C3a and the terminal complement complex at high dialysis blood flow: the relation with dialysis efficiency. Nephron. 1996;72:523–9.

    Article  PubMed  CAS  Google Scholar 

  61. Masaki T, Gilson J, Leypoldt JK, Cheung AK. Effect of permeability on indices of haemodialysis membrane biocompatibility. Nephrol Dial Transplant. 1999;14:1176–1.

    Article  PubMed  CAS  Google Scholar 

  62. Ferreira SH, Rocha e Silva M. Potentiation of bradykinin and eledoisin by BPF (bradykinin potentiating factor) from Bothrops jararaca venom. Experientia. 1965;21: 347–9.

    Article  PubMed  CAS  Google Scholar 

  63. Erdos EG. Angiotensin-I converting enzyme and the changes in our concepts through the years — Dahl-Lewis. K. memorial lecture. Hypertension. 1990;16:363–70.

    Article  PubMed  CAS  Google Scholar 

  64. Krieter DH, Grude M, Lemke HD et al. Anaphylactoid reactions during hemodialysis in sheep are ACE inhibitor dose-dependent and mediated by bradykinin. Kidney Int. 1998;53:1026–35.

    Article  PubMed  CAS  Google Scholar 

  65. Van der Niepen P, Sennesael JJ, Verbeelen DL. Kinin kinetics during different dialysis protocols with AN69 dialyser in ACEI-treated patients. Nephrol Dial Transplant. 1995;10:1689–95.

    PubMed  Google Scholar 

  66. Mannstadt M, Touam M, Fink E et al. No generation of bradykinin with a new polyacrylonitrile membrane (SPAN) in haemodialysis patients treated with ACE inhibitors. Nephrol Dial Transplant. 1995;10:1696–700.

    PubMed  CAS  Google Scholar 

  67. Renaux JL, Thomas M, Crost T, Loughraieb N, Vantard G. Activation of the kallikrein-kinin system in hemodialysis: role of membrane electronegativity, blood dilution, and pH. Kidney Int. 1999;55:1097–103.

    Article  PubMed  CAS  Google Scholar 

  68. Deppisch R, Gohl H, Smeby L. Microdomain structure of polymeric surfaces — potential for improving blood treatment procedures. Nephrol Dial Transplant. 1998;13:1354–9.

    Article  PubMed  CAS  Google Scholar 

  69. Valette P, Thomas M, Dejardin P. Adsorption of low molecular weight proteins to hemodialysis membranes: experimental results and simulations. Biomaterials. 1999;20:1621–34.

    Article  PubMed  CAS  Google Scholar 

  70. Kuwahara T, Markert M, Wauters JP. Proteins adsorbed on hemodialysis membranes modulate neutrophil activation. Artif Organs. 1989;13:427–31.

    Article  PubMed  CAS  Google Scholar 

  71. Fawcett S, Hoenich NA, Laker MF, Schorr W Jr, Ward MK, Kerr DN. Haemodialysis-induced respiratory changes. Nephrol Dial Transplant. 1987;2:161–8.

    PubMed  CAS  Google Scholar 

  72. Dhakal MP, Kallay MC, Shelly MA, Talley TE. Post hemodialysis hypoxia occurs both with biocompatible and bioincompatible dialyzers. Dial Transplant. 1999;28:666–72.

    Google Scholar 

  73. Tabor B, Geissler B, Odell R, Schmidt B, Blumenstein M, Schindhelm K. Dialysis neutropenia: the role of the cytoskeleton. Kidney Int. 1998;53;783–9.

    Article  PubMed  CAS  Google Scholar 

  74. Rousseau Y, Carreno MP, Poignet JI, Kazatchkine MD, Haeffner-Cavaillon N. Dissociation between complement activation integrin expression and neutropenia during hemodialysis. Biomaterials. 1999;20:1959–67.

    Article  PubMed  CAS  Google Scholar 

  75. Tetta C, Biasioli S, Schiavron R, Inguaggiato P et al. An overview of haemodialysis and oxidant stress. Blood Purif. 1999;17:118–26.

    Article  PubMed  CAS  Google Scholar 

  76. Rinder CS, Bonan JL, Rinder HM, Mathew J, Hines R, Smith BR. Cardiopulmonary bypass induces leukocyte platelet adhesion. Blood. 1992;79:1201–5.

    PubMed  CAS  Google Scholar 

  77. Bonomini M, Stuard S, Carreno M-P, Settefrati N, Santarelli P, Haeffner-Cavaillon N. Neutrophil reactive oxygen species production during hemodialysis: role of activated platelet adhesion to neutrophils through P selectin. Nephron. 1997;75:402–11.

    Article  PubMed  CAS  Google Scholar 

  78. Memoli B. Cytokine production in haemodialysis. Blood Purif. 1999;17:149–58.

    Article  PubMed  CAS  Google Scholar 

  79. Hertel J, Kimmel PL, Phillips TM, Bosch JP. Eosinophilia and cellular cytokine responsiveness in hemodialysispatients. JASN. 1992;3:1244–52.

    PubMed  CAS  Google Scholar 

  80. Himmelfarb J, McMonagle E, Holbrook D, Hakim R. Increased susceptibility to erythrocyte C5b-9 deposition and complement-mediated lysis in chronic renal failure. Kidney Int. 1999;55:659–66.

    Article  PubMed  CAS  Google Scholar 

  81. Seukeran D, Fletcher S, Sellars L, Vestey JP. Sudden deepening of pigmentation during haemodialysis due to severe haemolysis. Br J Dermatol. 1997;137:997–9.

    Article  PubMed  CAS  Google Scholar 

  82. Tokars JI, Miller ER, Alter MJ, Arduino MJ. National surveillance of dialysis-associated diseases in the United States, 1997. Semin Dial. 2000;13:75–85.

    Article  PubMed  CAS  Google Scholar 

  83. Roth VR, Jarvis WR. Outbreaks of infection and/or pyrogenic reactions in dialysis patients. Semin Dial. 2000;13:92–6.

    Article  PubMed  CAS  Google Scholar 

  84. Daugirdas JT, Ing TS. First-use reactions during hemodialysis: a definition of subtypes. Kidney Int. 1988;33(Suppl. 24): S37–43.

    Google Scholar 

  85. Poothullil J, Shimizu A, Day RP, Dolovich J. Anaphylaxis from the product(s) of ethylene oxide gas. Ann Intern Med. 1975;82:58–60.

    Article  PubMed  CAS  Google Scholar 

  86. Grammer LC, Patterson R. IgE against ethylene oxide altered human serum albumin (ET ’O-HSA) as an etiological agent in allergic reactions of hemodialysis patients. Artif Organs. 1987:11:97–9.

    Article  PubMed  CAS  Google Scholar 

  87. Grammer LC, Harris KE, Shaughnessy MA, Dolovich J, Patterson R, Evans S. Antibodies to toluene di isocyanate in patients with and without dialysis anaphylaxis. Artif Organs. 1991;15:2–4.

    Article  PubMed  CAS  Google Scholar 

  88. Hoenich NA, Thompson J, McCabe J, Appleton DR. Particle release from haemodialysers. Int J Artif Organs. 1990;13:803–8.

    PubMed  CAS  Google Scholar 

  89. Oba T, Tsuji K, Nakamura A et al. Migration of acetylated hemicellulose from capillary hemodialyser to blood causing scleritis and/or iritis. Artif Organs. 1984;8:429–35.

    Article  PubMed  CAS  Google Scholar 

  90. Hutter JC, Kuehnert MJ, Wallis RR, Lucas AD, Sen S, Jarvis WR. Acute onset of decreased vision and hearing traced to hemodialysis treatment with aged dialyzers. J Am Med Assoc. 2000;283:2128–34.

    Article  CAS  Google Scholar 

  91. Laurence RA, Lapierre ST. Quality of hemodialysis water : a 7 year multicenter study. Am J Kidney Dis. 1995;25:738–50.

    Article  PubMed  CAS  Google Scholar 

  92. Vorbeck Meister I, Sommer R, Vorbeck F, Horl WH. Quality of water used for haemodialysis: bacteriological and chemical parameters. Nephrol Dial Transplant. 1999;14: 666–75.

    Article  PubMed  Google Scholar 

  93. Brunet P, Berland Y. Water quality and complications of haemodialysis. Nephrol Dial Transplant. 2000;15:578–80.

    Article  PubMed  CAS  Google Scholar 

  94. Gardiner AOP, Sawyer AN, Donckerwolcke RA et al. Assessment of dialysis requirement for children on regular hemodialysis. Dial Transplant. 1982;11:754–57.

    Google Scholar 

  95. Port FK, Wolfe RA. Optimizing the dialysis dose with consideration of patient size. Blood Purif. 2000;18:295–7.

    Article  PubMed  CAS  Google Scholar 

  96. Owen WF Jr, Chertow GM, Lazarus JM, Lowrie EG. Dose of hemodialysis and survival: differences by race and sex. J Am Med Assoc. 1998;280:1764–8.

    Article  Google Scholar 

  97. Mallick NP, Hutchinson A, Patel M, Harty J. Factors influencing dialysis outcome: the dialysis dose in perspective. Nephrol Dial Transplant. 1998;13(Suppl. 6):152–7.

    Article  PubMed  Google Scholar 

  98. Ronco C, Ghezzi PM, Hoenich NA, Delfino P. Membranes and filters for hemodialysis. Database 2001. Basel: Karger, 2001.

    Google Scholar 

  99. Wolf L, Zaltzman S. Optimum geometry for artificial kidney dialysers. Chem Eng Prog Symp Series. 1968;64:104–11.

    Google Scholar 

  100. Waugh HV. Performance evaluation and improvements of hollow fibre haemodialysers: implications for tomorrows dialysis patients. MPhil dissertation, Heriot-Watt University, Edinburgh, 1999.

    Google Scholar 

  101. Wickramashinge SR, Semmens MJ, Cussler EL. Mass transfer in various hollow fibre geometries. J Membrane Sci. 1985;69:235–50.

    Article  Google Scholar 

  102. Bao L, Liu B, Lipscomb GG. Entry mass transfer in axial flows through randomly packed fibre bundles. AICHE J. 1999;45:2346–56.

    Article  CAS  Google Scholar 

  103. Lemanski J, Lipscomb GG. Effect of shell side flows on hollow fibre membrane device performance. AICHE J. 1995;41:2322–6.

    Article  CAS  Google Scholar 

  104. Leypoldt JK, Cheung AK, Agodoa LY, Daugirdas JT, Greene T, Keshaviah PR. Hemodialyzer mass transfer-area coefficients for urea increase at high dialysate flow rates. The Hemodialysis (HEMO) Study. Kidney Int. 1997;51: 2013–17.

    Article  PubMed  CAS  Google Scholar 

  105. Günther C, Ansorge W, Blümlich B et al. Characterization of a new technique to enhance the clearance performance of modern dialysers using NMR spectroscopy. Artif Organs. 1999;23:650 (abstract).

    Google Scholar 

  106. Hauk M, Kuhlmann MK, Riegel W, Kohler H. In vivo effects of dialysate flow rate on Ktl V in maintenance hemodialysis patients. Am J Kidney Dis. 2000;35:105–11.

    Article  PubMed  CAS  Google Scholar 

  107. Ronco C, Brendolan A, Lupi A, Metry G, Levin NW. Effects of a reduced inner diameter of hollow fibers in hemodialyzers. Kidney Int. 2000;58:809–17.

    Article  PubMed  CAS  Google Scholar 

  108. De Vecci AF, Dratwa M, Wiedemann ME. Healthcare systems in end stage renal disease (ESRD) therapies — an international review: costs and reimbursement/finding of ESRD therapies. Nephrol Dial Transplant. 1999;14:31–41.

    Article  Google Scholar 

  109. Humes D, Buffington DA, Mackay SM, Funke AJ, Weitzel WF. Replacement of renal function in uremic animals with a tissue engineered kidney. Nature Biotechnol. 1999;17:451–5.

    Article  CAS  Google Scholar 

  110. Davankov V, Pavlova L, Tsyurupa M, Brady J, Balsamo M, Yousha E. Polymeric adsorbent for removing toxic proteins from blood of patients with kidney failure. J Chromatog B: Biomed Sci Appl. 2000;739:73–80.

    Article  CAS  Google Scholar 

  111. Winchester JF, Ronco C, Brady JA et al. Sorbent augmented dialysis: minor addition or major advance in therapy. Blood Purif. 2001;19:255–9.

    Article  PubMed  CAS  Google Scholar 

  112. Ronco C, Brendolan A, Winchester JF et al. First clinical experience with an adjunctive hemoperfusion device designed specifically to remove β2 microglobulinin hemodialysis. Blood Purif. 2001;19:260–3.

    Article  PubMed  CAS  Google Scholar 

  113. Arici M, Walls J. End stage renal disease, atherosclerosis and cardiovascular mortality: is C reactive protein the missing link? Kidney Int. 2001;59;407–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hoenich, N.A., Ghezzi, P.M., Ronco, C. (2004). Hemodialyzers and related devices. In: Hörl, W.H., Koch, K.M., Lindsay, R.M., Ronco, C., Winchester, J.F. (eds) Replacement of Renal Function by Dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2275-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2275-3_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-7012-1

  • Online ISBN: 978-1-4020-2275-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics