Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 141))

  • 210 Accesses

Abstract

It is demonstrated how fundamental theory like M-theory can be tested by SNIa data. We discuss astronomical tests (redshift-magnitude relation, angular size minimum, age of the universe) for brane cosmologies with various types of matter sources on the brane. We also find the limits on exotic physics (brane models in Randall — Sundrum version) coming from CMB and BBN.

We show that in the case of dust matter on the brane, the difference between the best-fit model with a Λ-term and the best-fit brane models becomes detectable for redshifts z > 1.2. We show that brane models predict brighter galaxies for such redshifts that predicted by the Perlmutter model. We demonstrate that the fit to supernovae data can also be obtained if we admit super-negative dark energy on the brane instead of Λ-term. We prove that the minimum of the angular size of galaxies is very sensitive to the amount of both dark radiation and brane tension which are unique characteristics of brane models. In opposition to ordinary radiation which increases the minimum, the negative values of dark radiation and brane tension can decrease it. The minimum disappears for some large negative contribution of dark radiation. We show also that the age of the universe can increase significantly for all brane models with phantom matter on the brane. We suggest that in the near future when new data will be avaliable, the errors in estimations of the Ω i,0 parameters will significantly decrease, and stronger limits can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Veneziano, Phys. Lett. B265 (1991), 287.

    MathSciNet  Google Scholar 

  2. M. Gasperini and G. Veneziano, Astropart. Phys. 1 (1993), 317.

    Article  ADS  Google Scholar 

  3. J.E. Lidsey, D.W. Wands, and E.J. Copeland, Phys. Rep. 337 (2000), 343.

    Article  MathSciNet  ADS  Google Scholar 

  4. P. Hoiava and E. Witten, Nucl. Phys. B460 (1996), 506;

    Article  ADS  Google Scholar 

  5. P. Hoiava and E. Witten, ibid B475, 94.

    Google Scholar 

  6. M. Visser, Phys. Lett. B159 (1985), 22.

    MathSciNet  Google Scholar 

  7. C. Barcelo and M. Visser, Phys. Lett. B482 (2000) 183.

    ADS  Google Scholar 

  8. L. Randall and R. Sundrum, Phys. Rev. Lett., 83 (1999), 3370.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. L. Randall and R. Sundrum, Phys. Rev. Lett., 83 (1999), 4690.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B516 (1998) 70.

    Google Scholar 

  11. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Lett. B436 (1998) 257.

    Google Scholar 

  12. N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Rev. D59 (1999) 086004.

    Google Scholar 

  13. P. Binétruy, C. Deffayet and D. Langlois, Nucl. Phys. B565 (2000), 269.

    Article  ADS  MATH  Google Scholar 

  14. P. Binétruy, C. Deffayet and D. Langlois, Phys. Lett. B477 (2000), 285.

    Google Scholar 

  15. T. Shiromizu, K. Maeda, and M. Sasaki, Phys. Rev. D62, 024012 (2000)

    Google Scholar 

  16. M. Sasaki, T. Shiromizu and K. Maeda, ibid D62 (2000), 0240085

    Google Scholar 

  17. Mukhoyama, T. Shiromizu and K. Maeda, ibid D62 (2000), 024028.

    Google Scholar 

  18. C.M. Chen, T. Harko and M.K. Mak, Phys. Rev. D64 (2001), 044013.

    Google Scholar 

  19. C.M. Chen, T. Harko and M.K. Mak, Phys. Rev. D64 (2001), 124017.

    Google Scholar 

  20. L. Anchordoqui, C. Nunez and K. Olsen, JHEP 0010: 050 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  21. L. Anchordoqui et al.,Phys. Rev. D64 (2001) 084027.

    MathSciNet  ADS  Google Scholar 

  22. A. Campos and C.F. Sopuerta, Phys. Rev. D63 (2001), 104012.

    MathSciNet  ADS  Google Scholar 

  23. A. Campos and C. F. Sopuerta, Phys. Rev. D64 (2001), 104011.

    MathSciNet  ADS  Google Scholar 

  24. M. Szydlowski, M.P. Dabrowski, and A. Krawiec, Phys. Rev. D66 (2002), 0640XX (hepth/0201066).

    Google Scholar 

  25. S. Perlmutter et al.,Ap. J. 517, (1999) 565.

    Article  ADS  Google Scholar 

  26. P. M. Garnavich et al. Ap. J. Lett. 493 (1998) L53.

    Article  ADS  Google Scholar 

  27. A. G. Riess et al. Astron. J. 116 (1998) 1009.

    Article  ADS  Google Scholar 

  28. R.R. Caldwell, R. Dave and P.J. Steinhardt, Phys. Rev. Lett. 80 (1998), 1582;

    Google Scholar 

  29. I. Zlatev, L. Wang and P.J. Steinhardt, Phys. Rev. Lett. 82 (1999), 896;

    Article  ADS  Google Scholar 

  30. P.J. Steinhardt, L. Wang and I. Zlatev, Phys. Rev. D59 (1999), 123504.

    ADS  Google Scholar 

  31. R.R. Caldwell, astro-ph/9908168, S. Hannestad and E. Mörstell, astro-ph/0205096, P.H. Frampton, astro-ph/0209037, P.H. Frampton and T. Takahashi, astro-ph/0211544.

    Google Scholar 

  32. B. McInnes, e-print:astro-ph/0210321.

    Google Scholar 

  33. A.G. Riess et al., Ap. J. 560 (2001), 49.

    Article  ADS  Google Scholar 

  34. A. Melchiorri et al.,astro-ph/0211522.

    Google Scholar 

  35. U. Alam and V. Sahni, astro-ph/0209443.

    Google Scholar 

  36. M.P. Dabrowski and J. Stelmach, Ann. Phys (N. Y.) 166 (1986) 422.

    Article  MathSciNet  ADS  Google Scholar 

  37. M.P. Dabrowski, Ann. Phys (N. Y.) 248 (1996) 199.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. M.P. Dabrowski and J. Stelmach, Astron. Journ. 92 (1986), 1272.

    Article  ADS  Google Scholar 

  39. M.P. Dabrowski and J. Stelmach, Astron. Journ. 93 (1987), 1373.

    Article  ADS  Google Scholar 

  40. M.P. Dabrowski and J. Stelmach, Astron. Journ. 97 (1989), 978.

    Article  ADS  Google Scholar 

  41. M. P. Dabrowski and J. Stelmach, in Large Scale Structure in the Universe IAU Symposium No 130 eds. Jean Adouze, Marie-Christine Palletan and Alex Szalay, ( Kluwer Academic Publishers, 1988 ), 566.

    Chapter  Google Scholar 

  42. S. Weinberg, Gravitation and Cosmology ( Wiley, New York, 1972 ).

    Google Scholar 

  43. P. Singh, R.G. Vishwakarma and N. Dadhich, hep-th/0206193.

    Google Scholar 

  44. R.G. Vishwakarma and P. Singh, Can brane cosmology with a vanishing A explain the observations?, astro-ph/0211285.

    Google Scholar 

  45. G. Efstathiou, Mon. Not. R. Astr. Soc. 303 (1999), 147.

    Google Scholar 

  46. U.Alam 2003 astro-ph/0303009

    Google Scholar 

  47. http://www-supernova.lbl.gov, http:/cfa-www.harvard.edu/cfa/our/Research, http://snfactory.lbl.gov.

  48. Vishwakarma, Gen. Rel. Gray. 33 (2001), 1973.

    Google Scholar 

  49. G.F.R. Ellis and M.A.H. MacCallum, Comm. Math. Phys. 19 (1970), 31.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. M.P. Dabrowski, W. Godlowski and M. Szydlowski, astro-ph/0210156.

    Google Scholar 

  51. M. Doran, M. Lilley, J. Schwindt, and C. Wetterich, Astrophys. J. 559, 501 (2001).

    Article  ADS  Google Scholar 

  52. W. Hu, M. Fukugita, M. Zaldarriaga, and M. Tegmark, Astrophys. J. 549, 669 (2001).

    Article  ADS  Google Scholar 

  53. K. Ichiki, M. Yahiro, T. Kajino, M. Orito, and G. J. Mathews, Phys. Rev. D 66, 043521 (2002).

    Google Scholar 

  54. P. de Bernardis et al., Astrophys. J. 564, 559 (2002).

    Article  ADS  Google Scholar 

  55. D. N. Spergel et al. (2003), astro-ph/0302209.

    Google Scholar 

  56. L. Page et al. (2003), astro-ph/0302220.

    Google Scholar 

  57. N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Rev. D 59, 086004 (1999).

    Google Scholar 

  58. P. Binetruy, C. Deffayet, and D. Langlois, Nucl. Phys. B 565, 269 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Godłowski, W., Szydłowski, M., Czaja, W. (2004). Toward testing the fundamental physics by SNIa data. In: de Sabbata, V., Gillies, G.T., Melnikov, V.N. (eds) The Gravitational Constant: Generalized Gravitational Theories and Experiments. NATO Science Series, vol 141. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2242-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2242-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1956-2

  • Online ISBN: 978-1-4020-2242-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics