Is a Hypothetical Long Range Spin Interaction Observable with a Laboratory Detector?

  • R. C. Ritter
  • G. T. Gillies
Conference paper
Part of the NATO Science Series book series (NAII, volume 141)

Abstract

A quadrupole arrangement on a torsion pendulum of two polarized masses each having intrinsic spin ~ 1021h acts as a detector of hypothetical anomalous spin interactions. Unlike earlier experiments in our laboratories using local source masses acting on these detectors to investigate anomalous spin interactions, e.g. existence of the axion, this experiment seeks a possible anomalous spin sensing of matter on a scale as large as our galaxy. Rotation of the Earth provides a scan of the sky by the detector, and pendulum position variation is time-correlated with a predicted daily pattern. Our original motivation was the possibility of detecting an exotic dark matter cloud roughly centered in our galaxy, although other sources are conceivable. After eight years of essentially continuous operation, a long-term pattern has developed in the correlations of pendulum torque with predicted pattern. This is analyzed as an unspecified signal, and is referenced to a sidereal frame to separate it from from local noise and systematic causes. The expected high noise-to-signal level requires unusual analytical methods. A 1997 report at this School discussed results of the first two years of this experiment, which could not anticipate the 8-year pattern we now observe.

Keywords

Nickel Anisotropy Torque Cobalt Nicotine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leitner, J. and Okubo, S., (1964) Phys. Rev. 136, B1542.MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Klein, J.R. and Thorsett, S.E., (1990), Phys. Lett. A 145, 79.Google Scholar
  3. 3.
    Lammerzahl, C., (1997), Spin in Gravity: Is it Possible to Give an Experimental Basis to Torsion?, ed. Bergmann, P.G., de Sabbata, V., Gillies, G.T., Pronin, P.I.,World Scientific, Singapore. pp 91–117.Google Scholar
  4. 4.
    Moody, J.E., and Wilczek, F., (1984), Phys. Rev. D 30, 130.Google Scholar
  5. 5.
    Ritter, R.C. and Gillies, G.T., (1997), Spin in Gravity: Is it Possible to Give an Experimental Basis to Torsion?, ed. Bergmann, P.G., de Sabbata, V., Gillies, G.T., Pronin, P.I., World Scientific, Singapore. pp 199–212.Google Scholar
  6. 6. Spin in Gravity: Is it Possible to Give an Experimental Basis to Torsion?,ed. Bergmann, P.G., de Sabbata, V., Gillies, G.T., Pronin, P.I., World Scientific, Singapore. pp 1–255.Google Scholar
  7. 7.
    Krause, D.E., Fischbach, E. and Talmadge, C. (1993) Perspectives in Neutrinos, Atomic Physics, and Gravitation, ed. Tran Thanh Van, J., Damour, T., Hinds, E. and Wilkerson, J., Editions Frontieres, Gif-sur-Yvette Cedes — France. pp 455–463.Google Scholar
  8. 8.
    Adelberger, E.G., 2001 Classical and Quantum Gravity, 18, 2397–2405.ADSMATHCrossRefGoogle Scholar
  9. 9.
    Ritter, R.C. et al, (1990), Phys. Rev. D 42, 977–991.Google Scholar
  10. 10.
    Ansel’m, A. (1982), Pis’ma Zh. Eksp. Teor. Fiz. 35, 266Google Scholar
  11. 11.
    Heckel, B.R. et al, (2000) Advances in Space Research, 25, pp. 1225–1230;ADSCrossRefGoogle Scholar
  12. Adelberger, E. et al (1999) Proc. Of the Fifth International Wein Symposium: Physics Beyond the Standard Model, ed. Herczeg, P., Hoggman, C.M., and Klapdor-Kleingrothaus, H.G., World Scientific, Singapore, pp 717–737.Google Scholar
  13. 12.
    Ritter, R.C., Winkler, L.I. and Gillies, G.T. (1993) Phys. Rev. Lett. 70, 701–704.ADSCrossRefGoogle Scholar
  14. 13.
    Youdin, A.N. et al, (1996), Phys. Rev. Lett. 77, 2170–2173.Google Scholar
  15. 14.
    Bluhm, and Kostelecky, (2000) Phys. Rev. Lett. 84, 138–141.ADSGoogle Scholar
  16. 15.
    Turner, M.S., (1990) Phys. Rep. 197, 67ADSCrossRefGoogle Scholar
  17. 16.
    Ritter, R.C., Winkler, L.I., and Gillies, G.T. (1994), Particle Astrophysics, Atomic Physics, and Gravitation, ed. Tran Thanh Van, J., Fontaine, G., and Hinds, E., Editions Frontieres, Gif-sur-Yvette Cedes — France. pp 441–444.Google Scholar
  18. 17.
    Ritter, R.C., Winkler, L.I., and Gillies, G.T., (1996) Dark Matter in Cosmology, Quantum Measurements, and Experimental Gravitation, Ed. Ansari, R., GiraudHeraud, Y. and Tran Thanh Van, J., E., Editions Frontieres, Gif-sur-Yvette Cedes — France. pp 417–422.Google Scholar
  19. 18.
    Ritter, R.C., Winkler, L.I., and Gillies, G.T., (1997) Very High Energy Phenomena in the Universe,, Ed. Giraud-Heraud, Y. and Tran Thanh Van, J., Editions Frontieres, Gif-sur-Yvette Cedes— France. pp 349–352.Google Scholar
  20. 19.
    Ritter, R.C. and Gillies, G.T.,), Spin in Gravity: Is it Possible to Give an Experimental Basis to Torsion?,ed. Bergmann, P.G., de Sabbata, V., Gillies, G.T., Pronin, P.I., World Scientific, Singapore. pp 213–224.Google Scholar
  21. 20.
    Phillips, P.R., (1987) Phys. Rev. Lett. 59, 1784–1787.ADSCrossRefGoogle Scholar
  22. 21.
    Wang, S-L., Ni, W-T, and Pan, S-S, (1993) Mod. Phys. Lett. A 8, 3715.Google Scholar
  23. 22.
    K. Nordtvedt has also suggested that the Earth’s core might itself be a potential large mass with some intrinsic spin alignment for detecting exotic coupling to regions in space.Google Scholar
  24. 23.
    We thank Andrew Hall for the suggestion of that possibility and for many other interesting discussions of this experiment.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • R. C. Ritter
    • 1
  • G. T. Gillies
    • 1
  1. 1.Department of PhysicsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations