Skip to main content

Is a Hypothetical Long Range Spin Interaction Observable with a Laboratory Detector?

  • Conference paper
The Gravitational Constant: Generalized Gravitational Theories and Experiments

Part of the book series: NATO Science Series ((NAII,volume 141))

  • 208 Accesses

Abstract

A quadrupole arrangement on a torsion pendulum of two polarized masses each having intrinsic spin ~ 1021h acts as a detector of hypothetical anomalous spin interactions. Unlike earlier experiments in our laboratories using local source masses acting on these detectors to investigate anomalous spin interactions, e.g. existence of the axion, this experiment seeks a possible anomalous spin sensing of matter on a scale as large as our galaxy. Rotation of the Earth provides a scan of the sky by the detector, and pendulum position variation is time-correlated with a predicted daily pattern. Our original motivation was the possibility of detecting an exotic dark matter cloud roughly centered in our galaxy, although other sources are conceivable. After eight years of essentially continuous operation, a long-term pattern has developed in the correlations of pendulum torque with predicted pattern. This is analyzed as an unspecified signal, and is referenced to a sidereal frame to separate it from from local noise and systematic causes. The expected high noise-to-signal level requires unusual analytical methods. A 1997 report at this School discussed results of the first two years of this experiment, which could not anticipate the 8-year pattern we now observe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leitner, J. and Okubo, S., (1964) Phys. Rev. 136, B1542.

    Article  MathSciNet  ADS  Google Scholar 

  2. Klein, J.R. and Thorsett, S.E., (1990), Phys. Lett. A 145, 79.

    Google Scholar 

  3. Lammerzahl, C., (1997), Spin in Gravity: Is it Possible to Give an Experimental Basis to Torsion?, ed. Bergmann, P.G., de Sabbata, V., Gillies, G.T., Pronin, P.I.,World Scientific, Singapore. pp 91–117.

    Google Scholar 

  4. Moody, J.E., and Wilczek, F., (1984), Phys. Rev. D 30, 130.

    Google Scholar 

  5. Ritter, R.C. and Gillies, G.T., (1997), Spin in Gravity: Is it Possible to Give an Experimental Basis to Torsion?, ed. Bergmann, P.G., de Sabbata, V., Gillies, G.T., Pronin, P.I., World Scientific, Singapore. pp 199–212.

    Google Scholar 

  6. 6. Spin in Gravity: Is it Possible to Give an Experimental Basis to Torsion?,ed. Bergmann, P.G., de Sabbata, V., Gillies, G.T., Pronin, P.I., World Scientific, Singapore. pp 1–255.

    Google Scholar 

  7. Krause, D.E., Fischbach, E. and Talmadge, C. (1993) Perspectives in Neutrinos, Atomic Physics, and Gravitation, ed. Tran Thanh Van, J., Damour, T., Hinds, E. and Wilkerson, J., Editions Frontieres, Gif-sur-Yvette Cedes — France. pp 455–463.

    Google Scholar 

  8. Adelberger, E.G., 2001 Classical and Quantum Gravity, 18, 2397–2405.

    Article  ADS  MATH  Google Scholar 

  9. Ritter, R.C. et al, (1990), Phys. Rev. D 42, 977–991.

    Google Scholar 

  10. Ansel’m, A. (1982), Pis’ma Zh. Eksp. Teor. Fiz. 35, 266

    Google Scholar 

  11. Heckel, B.R. et al, (2000) Advances in Space Research, 25, pp. 1225–1230;

    Article  ADS  Google Scholar 

  12. Adelberger, E. et al (1999) Proc. Of the Fifth International Wein Symposium: Physics Beyond the Standard Model, ed. Herczeg, P., Hoggman, C.M., and Klapdor-Kleingrothaus, H.G., World Scientific, Singapore, pp 717–737.

    Google Scholar 

  13. Ritter, R.C., Winkler, L.I. and Gillies, G.T. (1993) Phys. Rev. Lett. 70, 701–704.

    Article  ADS  Google Scholar 

  14. Youdin, A.N. et al, (1996), Phys. Rev. Lett. 77, 2170–2173.

    Google Scholar 

  15. Bluhm, and Kostelecky, (2000) Phys. Rev. Lett. 84, 138–141.

    ADS  Google Scholar 

  16. Turner, M.S., (1990) Phys. Rep. 197, 67

    Article  ADS  Google Scholar 

  17. Ritter, R.C., Winkler, L.I., and Gillies, G.T. (1994), Particle Astrophysics, Atomic Physics, and Gravitation, ed. Tran Thanh Van, J., Fontaine, G., and Hinds, E., Editions Frontieres, Gif-sur-Yvette Cedes — France. pp 441–444.

    Google Scholar 

  18. Ritter, R.C., Winkler, L.I., and Gillies, G.T., (1996) Dark Matter in Cosmology, Quantum Measurements, and Experimental Gravitation, Ed. Ansari, R., GiraudHeraud, Y. and Tran Thanh Van, J., E., Editions Frontieres, Gif-sur-Yvette Cedes — France. pp 417–422.

    Google Scholar 

  19. Ritter, R.C., Winkler, L.I., and Gillies, G.T., (1997) Very High Energy Phenomena in the Universe,, Ed. Giraud-Heraud, Y. and Tran Thanh Van, J., Editions Frontieres, Gif-sur-Yvette Cedes— France. pp 349–352.

    Google Scholar 

  20. Ritter, R.C. and Gillies, G.T.,), Spin in Gravity: Is it Possible to Give an Experimental Basis to Torsion?,ed. Bergmann, P.G., de Sabbata, V., Gillies, G.T., Pronin, P.I., World Scientific, Singapore. pp 213–224.

    Google Scholar 

  21. Phillips, P.R., (1987) Phys. Rev. Lett. 59, 1784–1787.

    Article  ADS  Google Scholar 

  22. Wang, S-L., Ni, W-T, and Pan, S-S, (1993) Mod. Phys. Lett. A 8, 3715.

    Google Scholar 

  23. K. Nordtvedt has also suggested that the Earth’s core might itself be a potential large mass with some intrinsic spin alignment for detecting exotic coupling to regions in space.

    Google Scholar 

  24. We thank Andrew Hall for the suggestion of that possibility and for many other interesting discussions of this experiment.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Ritter, R.C., Gillies, G.T. (2004). Is a Hypothetical Long Range Spin Interaction Observable with a Laboratory Detector?. In: de Sabbata, V., Gillies, G.T., Melnikov, V.N. (eds) The Gravitational Constant: Generalized Gravitational Theories and Experiments. NATO Science Series, vol 141. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2242-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2242-5_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1956-2

  • Online ISBN: 978-1-4020-2242-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics