Advertisement

Keywords

Bark Beetle Tree Resistance Resin Flow Tree Susceptibility Beetle Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amezaga, I. 1997. Forest characteristics affecting the rate of shoot pruning by the pine shoot beetle (Tomicus piniperda L.) in Pinus radiata D. Don and P. sylvestris L. plantations. Forestry 70, 129-37.Google Scholar
  2. Amman G.D., McGregor, M.D., Schmitz, R.F. & Oakes, R.D. 1988. Susceptibility of lodgepole pine to infestation by mountain pine beetles following partial cutting of stands. Canadian Journal of Forest Research 18, 688-95.Google Scholar
  3. Annila, E., Långström, B., Varama, M., Hiukka, R. & Niemela, P. 1999. Susceptibility of defoliated Scots pine to spontaneous and induced attack by Tomicus piniperdaand Tomicus minor. Silva Fennica 33, 93-106.Google Scholar
  4. Baier P., Führer, E., Kirisits, T. & Rosner, S. 2002. Defence reactions of Norway spruce against bark beetles and the associated fungus Ceratocystis polonica in secondary pure and mixed species stands. Forest Ecology and Management 159, 73-86.Google Scholar
  5. Bakke, A., 1983. Host tree and bark beetle interaction during mass outbreak of Ips typographus in Norway. Zeitschrift für angwandte Entomologie, 96, 118-25.Google Scholar
  6. Baradat, P., Bernard-Dagan, C., Pauly, G. & Zimmermann-Fillon, C. 1975. Les terpènes du Pin maritime : aspects biologiques et génétiques. III. Hérédité de la teneur en myrcène. Annales des Sciences Forestières, 32, 29-54.Google Scholar
  7. Baradat, P., Marpeau, A. & Bernard-Dagan, C. 1978. Variation of terpenes within and between populations of maritime pine. In. Biochemical genetics of forest trees, D. Rudin (Ed.), Umea, Sweden.Google Scholar
  8. Barrett, J.P. & Bengston, G.W. 1964. Oleoresin yields for slash pines from seven seed sources. Forest Science, 10, 159-64.Google Scholar
  9. Bartos, D.L. & Amman, G.D. 1989. Microclimate: an alternative to tree vigor as a basis for mountain pine beetle infestations. USDA Forest Service Research Paper INT-400.Google Scholar
  10. Bartos, D.L. & Booth, G.D. 1994. Effects of thinning on temperature dynamics and mountain pine beetle activity in a lodgepole pine stand. USDA Forest Service Research Paper INT-RP-479.Google Scholar
  11. Belanger, R.P., Osgood, E.A. & Hatchell, G.E., 1979. Stand, soil, and site characteristics associated with southern pine beetle infestations in the southern Appalachians. USDA Forest Service Research Paper SE-198.Google Scholar
  12. Bernard-Dagan, C., Fillon, C., Pauly, G., Baradat, P. & Illy, G. 1971. Les terpènes du Pin maritime. I. Variabilité de la composition monoterpénique dans un individu, entre individus et entre provenances. Annales des Sciences Forestières, 28, 223-58.Google Scholar
  13. Berryman, A.A. 1972. Resistance of conifers to invasion by bark beetle fungus associations. BioScience 22,598-602.Google Scholar
  14. Berryman, A.A. 1976. Theoretical explanation of mountain pine beetle dynamics in lodgepole pine forests. Environmental Entomology, 5,1225-33.Google Scholar
  15. Berryman, A.A. 1982. Population Dynamics of Bark Beetles. In. Bark Beetles in North American Conifers, J.B. Mitton, K.B. Sturgeon (Eds.). Austin: University of Texas.Google Scholar
  16. Berryman, A.A. & Ashraf, M. 1970. Effects of Abies grandisresin on the attack behavior and brood survival of Scolytus ventralis (Coleoptera: Scolytidae). The Canadian Entomologist, 102,1229-36.Google Scholar
  17. Blanche, C.A., Hodges, J.D. & Nebeker, T.E. 1985. Changes in bark beetle susceptibility indicators in a lightning-struck loblolly pine. Canadian Journal of Forest Research, 15, 397-99.Google Scholar
  18. Blanche, C.A., Lorio, P.L., Jr., Sommers, R.A., Hodges, J.D. & Nebeker, T.E. 1992. Seasonal cambial growth and development of loblolly pine: xylem formation, inner bark chemistry, resin ducts, and resin flow. Forest Ecology and Management, 49, 151-65.Google Scholar
  19. Bois, E. & Lieutier, F. 1997. Phenolic response of Scots pine clones to inoculation with Leptographium wingfieldii, a fungus associated with Tomicus piniperda. Plant Physiology and Biochemistry, 35, 819-25.Google Scholar
  20. Bois E., Lieutier F. & Yart, A. 1999. Bioassays on Leptographium wingfieldii, a bark beetle associated fungus, with phenolic compounds of Scots pine phloem. European Journal of Plant Pathology, 105, 51-60.Google Scholar
  21. Bordasch, R.P. & Berryman, A.A. 1977. Host resistance to the fir engraver beetle Scolytus ventralis(Coleoptera: Scolytidae). 2. Repellency of Abies grandis resins and some monoterpenes. The Canadian Entomologist, 109, 95-100.Google Scholar
  22. Bridges, J.R. 1987. Effects of terpenoïd compounds on growth of symbiotic fungi associated with the southern pine beetle. Phytopathology, 77,83-85.Google Scholar
  23. Brignolas, F. 1995. Rôle des composés phénoliques dans l’efficacité de la réaction induite du liber de l’épicea (Picea abies) à enrayer la progression d’Ophiostoma polonicum, champignon associé au Scolytide Ips typographus. Thèse Université d’Orléans: Physiologie et biologie des organismes, populations, interactions.Google Scholar
  24. Brignolas, F., Lacroix, B., Lieutier, F., Sauvard, D., Drouet, A., Claudot, A.-C., Yart, A., Berryman, A.A. & Christiansen, E. 1995b. Induced responses in phenolic metabolism in two Norway spruce clones after wounding and inoculations with Ophiostoma polonicum, a bark beetle-associated fungus. Plant Physiology, 109,821-27.Google Scholar
  25. Brignolas, F. Lieutier, F., Sauvard, D., Christiansen, E. & Berryman, A.A. 1998. Phenolic predictors for Norway spruce resistance to the bark beetle Ips typographus (Coleoptera: Scolytidae) and an associated fungus, Ceratocystis polonica. Canadian Journal of Forest Research, 28,720-28.Google Scholar
  26. Brignolas, F., Lieutier, F., Sauvard, D., Yart, A., Drouet, A. & Claudot, A.-C. 1995a. Changes in soluble phenol content of Norway spruce (Picea abies Karst.) phloem in response to wounding and inoculation with Ophiostoma polonicum. European Journal of Forest Patholology, 25,253-65.Google Scholar
  27. Brown, M.W., Nebeker, T.E. & Honea, C.R. 1987. Thinning increases loblolly pine vigor and resistance to bark beetles. Southern Journal of applied Forestry 11, 28-31.Google Scholar
  28. Bryant, J.P., Chapin, F.S., III & Klein, D.R. 1983. Carbon nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos, 40, 357-68.Google Scholar
  29. Buijtenen, J.P. & Van Santamour, F. 1972. Resin crystallization related to weevil resistance in white pine (Pinus strobus). The Canadian Entomologist, 104, 215-18.Google Scholar
  30. Cates, R.G. & Alexander, H. 1982. Host Resistance and Susceptibility. In. Bark Beetles in North American Conifers, J.B. Mitton, K.B. Sturgeon (Eds.). Austin: Univ. Texas.Google Scholar
  31. Cedervind, J., Pettersson, M. & Långström, B. 2003. Attack dynamics of the pine shoot beetle, Tomicus piniperda(Co,. Scolytinae) in Scots pine stands defoliated by Bupalus piniaria(Lep. Geometridae). Agricultural and Forest Entomology 5, 253-61.Google Scholar
  32. Chararas C. 1962. Scolytides des Conifères. Paris, Lechevalier.Google Scholar
  33. Cheniclet, C., Bernard-Dagan, C. & Pauly, G. 1988. Terpene Biosynthesis Under Pathological Conditions. In. Mechanisms of Woody Plant Defences Against Insects: Search for Pattern, W.J. Mattson, J. Lévieux, C. Bernard-Dagan (Eds.). New York: Springer.Google Scholar
  34. Chiron, H., Drouet, A. Lieutier, F., Payer, H-D., Ernst, D. & Sandermann, H. Jr. 2000. Gene induction of stilbene biosynthesis in Scots pine in response to ozone treatment, wounding, and fungal infection. Plant Physiology, 124,865-72.PubMedGoogle Scholar
  35. Christiansen, E. 1985a. Ceratocystis polonicainoculated in Norway spruce: Blue-staining in relation to inoculum density, resinosis and tree growth. European Journal of Forest Pathology, 15,160-67.Google Scholar
  36. Christiansen, E. 1989. Bark beetles and air pollution. Meddelelser fra det Norske Skogforsoksvesen, 42, 101-07.Google Scholar
  37. Christiansen, E. 1992. After-effects of drought did not predispose young Picea abiesto infection by the bark beetle-transmitted blue-stain fungus Ophiostoma polonicum. Scandinavian Journal of Forest Research, 7, 557-69.Google Scholar
  38. Christiansen, E. & Ericsson, A. 1986. Starch reserves in Picea abies in relation to defence reaction against a bark beetle transmitted blue-stain fungus, Ceratocystis polonica Canadian Journal of Forest Research, 16, 78-83.Google Scholar
  39. Christiansen, E. & Fjorne, G. 1993. Pruning enhances the susceptibility of Picea abiesto infection by the bark beetle-transmitted blue-stain fungus, Ophiostoma polonicum. Scandinavian Journal of Forest Research 8, 235-45.Google Scholar
  40. Christiansen, E., Franceschi, V.R., Nagy, N.E., Krekling, T., Berryman, A.A., Krokene, P. & Solheim, H. 1999b. Traumatic resin ducts formation in Norway spruce (Picea abies(L.) Karst.) after wounding or infection with a bark beetle-associated blue stain fungus, Ceratocystis polonicaSiem. In. Physiology and Genetics of Tree Phytophage Interactions, F. Lieutier, W.J. Mattson, M.R. Wagner (Eds.). Versailles: INRA Editions.Google Scholar
  41. Christiansen, E. & Glosli, A.M. 1996. Mild drought enhances the resistance of Norway spruce to a bark beetle-transmitted blue-stain fungus. In: Dynamics of Forest Herbivory: Quest for Pattern and Principle, W.J. Mattson, P. Niemela, M. Rousi (Eds). USDA Forest Service General Technical Report NC-183, pp. 192-99.Google Scholar
  42. Christiansen, E. & Horntvedt, R. 1983. Combined Ips/Ceratocystis attack on Norway spruce and defensive mechanisms of the trees. Zeitschrift für angewandte Entomologie, 96, 110-18.Google Scholar
  43. Christiansen, E. & Huse, K. 1980. Infestation ability of Ips typographus in Norway spruce trees, in relation to butt rot, tree vitality and increment. Meddelelser fra det Norske Skogforsoksvesen, 35, 469-82.Google Scholar
  44. Christiansen, E., Krokene P., Berryman, A.A., Franceschi, V.R., Krekling, T., Lieutier, F., Lönneborg, A. & Solheim, H. 1999a. Mechanical injury and fungal infection induce acquired resistance in Norway spruce. Tree Physiology, 19, 399-403.Google Scholar
  45. Christiansen, E., Waring, R.H. & Berryman A.A. 1987. Resistance of conifers to bark beetle attack: searching for general relationships. Forest Ecology and Management, 22, 89-106.Google Scholar
  46. Cobb, F.W. Jr., Kirstie, M., Zavarin, E. & Barber, H.W., Jr. 1968a. Inhibitory effects of volatile oleoresin components on Fomes annosus and four Ceratocystisspecies. Phytopathology, 58, 1327-35.Google Scholar
  47. Cobb, F.W., Jr., Wood, D.L., Stark, R.W. & Parmeter, J.R., Jr. 1968b. Photochemical oxidant injury and bark beetles (Coleoptera: Scolytidae) infestation of ponderosa pine. IV. Theory on the relationship between oxidant injury and bark beetle infestation. Hilgardia, 39, 141-52.Google Scholar
  48. Cook, S. P., Hain, F.P. & Nappen, 1986. Seasonality of the hypersensitive response by loblolly and shortleaf pine to inoculation with a fungal associate of the southern pine beetle (Coleoptera: Scolytidae). Journal of Entomological Science, 21, 283-85.Google Scholar
  49. Coulson, R.N. 1979. Population dynamics of bark beetles. Annual Review of Entomology, 24, 417-47.Google Scholar
  50. Coulson, R.N., Flamm, R.O., Pulley, P.E., Payne, T.L., Rykiel, E.J. & Wagner, T.L. 1986. Response of the southern pine bark beetle guild (Coleoptera: Scolytidae) to host disturbance. Environmental Entomology, 15, 850-58.Google Scholar
  51. Croisé, L., Dreyer, E. & Lieutier, F. 1998a. Effects of drought stress and severe pruning on the reaction zone induced by single inoculations with a bark beetle associated fungus (Ophiostoma ips) in the phloem of young Scots pines. Canadian Journal of Forest Research 28, 1814-24.Google Scholar
  52. Croisé, L. & Lieutier, F. 1993. Effect of drought on the induced defence reaction of Scots pine to bark beetle-associated fungi. Annales des Sciences Forestières, 50, 91-97.Google Scholar
  53. Croisé, L., Lieutier, F., Cochard, H. & Dreyer, E. 2001. Effects of drought stress and high density stem inoculations with Leptographium wingfieldiion hydraulic properties of young Scots pine trees. Tree Physiology, 21, 427-36.PubMedGoogle Scholar
  54. Croisé, L., Lieutier, F. & Dreyer, E. 1998b. Scots pine responses to number and density of inoculation points with Leptographium wingfieldii Morelet, a bark beetle-associated fungus. Annales des Sciences Forestières, 55, 497-506.Google Scholar
  55. Dahlsten, D.L. & Rowney, D.L. 1980. Influence of air pollution on population dynamics of forest insects and on tree mortality. Symposium on effects of air pollutants on Mediterranean and temperate forest ecosystems, Riverside, California, USA, June 22-27.Google Scholar
  56. DeAngelis, J.D., Nebeker, T.E., & Hodges J.D., 1986. Influence of tree age and growth rate on the radial resin duct system in loblolly pine (Pinus taeda). Canadian Journal of Botany, 64, 1046-49.Google Scholar
  57. Debazac, E.F. 1977. Manuel des conifères, ENGREF, Nancy.Google Scholar
  58. Delorme, L., & Lieutier, F. (1990). Monoterpene composition of the preformed and induced resins of Scots pine, and their effect on bark beetles and associated fungi. Eur. J. For. Pathol., 20, 304-16.Google Scholar
  59. Dreyer, E., Guérard, N. Lieutier, F., Pasquier-Barré, F., Lung, B. & Piou, D. 2002. Interactions between nutrient and water supply to potted Pinus sylvestris trees and their susceptibility to several pests and pathogens. In. Effects of water and nutrient stress on pine susceptibility to various pest and disease guilds, Lieutier, F. (Ed), Final scientific report of the EU project FAIR 3 CT96-1854.Google Scholar
  60. Dunn, J.P. & Lorio, P.L., Jr. 1992. Effect of bark girdling on carbohydrate supply and resistance of loblolly pine to southern pine beetle (Dendroctonus frontalis Zimm.) attack. Forest Ecology and Management, 50, 317-30.Google Scholar
  61. Dunn, J.P. & Lorio, P.L., Jr. 1993. Modified water regimes affect photosynthesis, xylem water potential, cambial growth, and resistance of juvenile Pinus taeda L. to Dendroctonus frontalis (Coleoptera: Scolytidae). Physiological and Chemical Ecology, 22, 948-57.Google Scholar
  62. Ehnström, B., Långström, B. & Hellqvist, C. 1995. Insects in burned forests – forest protection and faunal conservation (preliminary results). Entomologica Fennica, 6, 109-17.Google Scholar
  63. Evensen, P.C., Solheim, H., Hoiland, K. & Stenersen, J. 2000. Induced resistance of Norway spruce, variation of phenolic compounds and their effects on fungal pathogens. Forest Pathology, 30, 97-108.Google Scholar
  64. Everaerts, C., Grégoire, J.-C. & Merlin, J. 1988. Toxicity of Spruce Monoterpenes Against Bark Beetles and Their Associates . In. Mechanisms of Woody Plant Defences Against Insects: Search for PatternW.J. Mattson, J. Lévieux, C. Bernard-Dagan (Eds.). New York: Springer.Google Scholar
  65. Fäldt, J., Martin, D., Miller, B., Rawat, S. & Bohlmann, J. 2003. Traumatic resin defence in Norway spruce (Picea abies): Methyl jasmonate-induced terpene synthase gene expression, and cDNA cloning and functional characterization of (+)-3-carene synthase. Plant Molecular Biology, 51, 119-33.PubMedGoogle Scholar
  66. Ferrell, G.T. 1974. Moisture stress and fir engraver (Coleoptera: Scolytidae) attack in white fir infected by true mistletoe. Canadian Entomologist 106, 315-18.Google Scholar
  67. Ferrell, G.T. 1978. Moisture stress threshold of susceptibility to fir engraver beetles in pole-size white firs. Forest Science, 24, 85-92.Google Scholar
  68. Ferrell, G.T. 1983. Host resistance to the fir engraver, Scolytus ventralis (Coleoptera: Scolytidae): frequencies of attacks containing resin blisters and canals of Abies concolor. The Canadian Entomologist, 115, 1421-28.Google Scholar
  69. Ferrell G.T. & Otrosina W.J., 1996. Differential susceptibility of white fir provenances to the fir engraver and its fungal symbiont in Northern California. In. Dynamics of forest herbivory; quest for pattern and principle, W.J. Mattson, P. Niemela, M. Rousi (Eds), USDA Forest Service General Technical Report NC-183.Google Scholar
  70. Ferrell, G.T., Otrosina, W.J. & Demars, Jr, C.R. 1994. Predicting susceptibility of white fir during a drought-associated outbreak of the fir engraver, Scolytus ventralis, in California. Canadian Journal of Forest Research 24, 302-05.Google Scholar
  71. Filip, G.M., Christiansen, E., & Parks, C.A., 1989. Secondary resin production increases with vigor of Abies grandisinoculated with Trichosporium symbioticumin Northeastern Oregon. USDA Forest Service Research Note PNW-RN-489, 12 p.Google Scholar
  72. Filip, G.M., Ganio, L.M., Oester, P.T., Mason, R.R. & Wickman, B.E. 2002. Ten-year effect of fertilization on tree growth and mortality associated with Armillaria root disease, fir engravers, dwarf mistletoe, and western spruce budworm in Northeastern Oregon. Western Journal of Applied Forestry, 17, 122-128.Google Scholar
  73. Flamm, R.O., Pulley, P.E. & Coulson, R.N. 1993. Colonization of disturbed trees by the southern pine bark beetle guild (Coleoptera: Scolytidae). Environmental Entomology, 22, 62-70.Google Scholar
  74. Franceschi, V.R., Krekling, T., Berryman, A.A. & Christiansen, E. 1998. Specialized phloem parenchyma cells in Norway spruce (Pinaceae) bark are an important site of defence reactions. American Journal of Botany 85, 601-15.Google Scholar
  75. Franceschi, V.R., Krekling, T. & Christiansen, E. 2002. Application of methyl jasmonate on Picea abies(Pinaceae) stems induces defence-related responses in phloem and xylem. American Journal of Botany, 89, 578-86.Google Scholar
  76. Franceschi, V.R., Krokene, P., Krekling, T., Berryman, A.A. & Christiansen, E. 2000. Phloem parenchyma cells are invoved in local and distant defence responses to fungal inoculation or bark beetle attack in Norway spruce (Pinaceae). American Journal of Botany, 87, 314-26.PubMedGoogle Scholar
  77. Fredericksen, T.S., Hedden, R.L. & Williams, S.A. 1995. Susceptibility of loblolly pine to bark beetle attack following simulated wind stress. Forest Ecology and Management, 76, 96-107.Google Scholar
  78. Gilbert, M., Vouland, G. & Grégoire J.C. 2001. Past attacks influence host selection by the solitary bark beetle Dendroctonus micans. Ecological Entomology, 26, 133-42.Google Scholar
  79. Gilmore, A.R. 1977. Effects of soil moisture stress OrgName monoterpenes in loblolly pine. Journal of Chemical Ecology, 3, 667-76.Google Scholar
  80. Grégoire, J.C. 1988. The Greater European Spruce Beetle. In. Dynamics of Forest Insect Populations: Patterns, Causes, Implications, A.A. Berryman (Ed). New York: Plenum Press.Google Scholar
  81. Grégoire J.C., Braekman J.C. & Tondeur A., 1982. Chemical communication between larvae of Dendroctonus micans Kug. (Coleoptera: Scolytidae). Les colloques de l’INRA. 7. Les médiateurs chimiques: 16-20.Google Scholar
  82. Grodski, W. 1997. Changes in the occurrence of bark beetles on Norway spruce in a forest decline area in the Sudety mountains in Poland. In. Integrated cultural tactics into the management of bark beetles and reforestation pests, J.C. Grégoire, A.M. Liebhold, F.R. Stephen, K.R. Day, S.M. Salom (Eds). USDA Forest Service General Technical Report NE-236.Google Scholar
  83. Guérard, N. 2001. Résistance du Pin sylvestre aux attaques de Scolytes et de leur champignons associés : interactions avec l’alimentation hydrique et minérale. Thèse Université de Tours, Biologie des populations, génétique et éco-éthologie.Google Scholar
  84. Guérard, N., Dreyer, E. & Lieutier, F. 2000a. Interactions between Scots pine, Ips acuminatus(Gyll.) and Ophiostoma brunneo-ciliatum(Math.): estimation of the critical thresholds of attack and inoculation densities and effects on hydraulic properties of the stem. Annals of Forest Sciences, 57, 681-90.Google Scholar
  85. Guérard, N., Dreyer, E. & Lieutier, F. 2000b. Influence of water and mineral nutrition on Scots pine resistance to bark-beetles and an associated blue-stain fungus. XXI IUFRO World Congress, 7.01.02 Working Party, ‘‘Mechanisms of tree resistance to phytophagous insects», 7-12 August, Kuala Lumpur (Malaysia).Google Scholar
  86. Hanover, J.A., 1975. Physiology of tree resistance to insects. Annual Review of Entomology, 20, 75-95.Google Scholar
  87. Hanover, J.W., 1966, Genetics of terpenes. 1. Gene control of monoterpenes levels in Pinus monticola Dougl. Heredity, 21, 73-84.Google Scholar
  88. Hard, J.S. 1985. Spruce beetle attacks slowly growing spruce. Forest Science, 31, 839-50.Google Scholar
  89. Harrington, T.C. 1993. Diseases of Conifers Caused by Species of Ophiostoma and Leptographium . In. Ceratocystis and Ophiostoma. Taxonomy, Ecology, and Pathogenicity, M.J. Wingfield, K.A. Seifert, J.F. Webber (Eds.). Saint Paul: APS Press.Google Scholar
  90. Hart, J.H. 1981. Role of phytostilbenes in decay and disease resistance. Annual Review of Phytopathology, 19, 437-58.Google Scholar
  91. Hart, J.H. & Shrimpton, D.M. 1979. Role of stilbenes in resistance of wood to decay. Phytopathology, 69, 1138-43.Google Scholar
  92. Heidger, C.M. & Lieutier, F. 2002. Possibilities to utilize tree resistance to insects in forest pest management in central and western Europe. In. Mechanisms and Deployment of Resistance in Trees to Insects, M.R. Wagner, K.M. Clancy, F. Lieutier, T.D. Paine (Eds), Dordrecht, Kluwer.Google Scholar
  93. Herms, D.A. & Mattson, W.J. 1992. The dilemma of plants: to grow or defend. Quaterly Review of Biology, 67, 283-335.Google Scholar
  94. Hodges, J.D. & Lorio, P.L., Jr. 1975. Moisture stress and composition of xylem oleoresin in loblolly pine. Forest Science, 21, 283-90.Google Scholar
  95. Hodges, J.D. & Picard, L.S. 1971. Lightning in the ecology of the southern pine beetle, Dendroctonus frontalis(Coleoptera: Scolytidae). The Canadian Entomologist, 103, 44-51.Google Scholar
  96. Horntvedt, R. 1988. Resistance of Picea abiesto Ips typographus: tree response to monthly inoculations with Ophiostoma polonicum, a beetle transmitted blue-stain fungus. Scand. J. For. Res., 3, 107-114.Google Scholar
  97. Horntvedt, R., Christiansen, E., Solheim, H. & Wang, S. 1983. Artificial inoculation with Ips typographus-associated blue-stain fungi can kill healthy Norway spruce trees. Meddelelser fra det Norske Skogforsoksvesen, 38, 1-20.Google Scholar
  98. Hudgins, J.W., Christiansen, E. & Franceschi V. 2003a. Methyl jasmonate induces changes mimicking anatomical defences in diverse members of the Pinaceae. Tree Physiology, 23, 361-71.Google Scholar
  99. Hudgins, J.W., Krekling, T. & Franceschi V. 2003b. Distribution of calcium oxalate crystals in the secondary phloem of conifers: constitutive defence mechanism? New Phytologist, 159, 677-690.Google Scholar
  100. Johnson, M.A. & Croteau, R. 1987. Biochemistry of Conifer Resistance to Bark Beetles and their Fungal Symbionts. In. Ecology and Metabolism of Plant Lipids, G. Fuller, W.D. Nes (Eds.). ACS Symposium Series N° 325. Washington DC: American Chemical Society.Google Scholar
  101. Karban, R. & Baldwin, I.T. 1997. Induced Responses to Herbivory. Chicago: The University of Chicago Press.Google Scholar
  102. Katoh, S. & Croteau, R. 1998. Individual variation in constitutive and induced monoterpene biosynthesis in grand fir (Abies grandis). Phytochemistry, 47, 577-82.Google Scholar
  103. Keen, F.P. 1938. Insects enemies of western forests. USDA Miscellanous Publication 273.Google Scholar
  104. King, E.W. 1972. Rainfall and epidemics of the southern pine beetle. Environmental Entomology, 1, 279-85.Google Scholar
  105. Klepzig, K.D., Kruger, E.L., Smalley, E.B. & Raffa K.F. 1995. Effects of biotic and abiotic stress on induced accumulation of terpenes and phenolics in red pines inoculated with bark beetle-vectored fungus. Journal of Chemical Ecology 21, 601-626.Google Scholar
  106. Koricheva, J., Larsson, S. & Haukioja, E. 1998. Insect performance on experimentally stressed woody plants: a meta-analysis. Annual Review of Entomology, 43, 195-216.PubMedGoogle Scholar
  107. Krekling, T., Franceschi, V.R., Berryman, A.A. & Christiansen, E. 2000. The structure and development of polyphenolic parenchyma cells in Norway spruce (Picea abies) bark. Flora, 195, 354-69.Google Scholar
  108. Krokene, P., Christiansen, E. & Solheim, H. 2000. Induced disease resistance in Norway spruce and its implications for bark beetle population dynamics. Abstracts of the XXI Intenational Congress of Entomology, August 20-26, Foz do Iguassu, Brazil.Google Scholar
  109. Krokene, P., Christiansen, E., Solheim, H., Franceschi, V.R. & Berryman, A.A. 1999. Induced resistance to pathogenic fungi in Norway spruce. Plant Physiology, 121, 565-69PubMedGoogle Scholar
  110. Krokene, P. & Solheim, H. 1999. What do low-density inoculations with fungus tell us about fungal virulence and tree resistance? In. Physiology and Genetics of Tree-Phytophage Interactions, F. Lieutier, W.J. Mattson, M.R. Wagner (Eds.). Versailles: INRA Editions.Google Scholar
  111. Krokene, P., Solheim, H. & Christiansen, E. 2001. Induction of disease resistance in Norway spruce (Picea abies) by necrotizing fungi. Plant Pathology, 50, 230-33.Google Scholar
  112. Krokene, P., Solheim, H., Krekling, T. & Christiansen, E. 2003. Inducible anatomical defence responses in Norway spruce stems and their possible role in induced resistance. Tree Physiology, 23, 191-97.PubMedGoogle Scholar
  113. Kytö, M., Niemela, P. & Annila, E. 1996. Vitality and bark-beetle resistance of fertilized Norway spruce. Forest Ecology and Management, 84, 149-57.Google Scholar
  114. Kytö, M., Niemela, P. & Annila, E. 1998. Effects of vitality fertilization on the resin flow and vigour of Scots pine in Finland. Forest Ecology and Management, 102, 121-30.Google Scholar
  115. Kytö, M., Niemela, P., Annila, E. & Varama, M. 1999. Effects of forest fertilization on radial growth and resin exudation of insect defoliated Scots pines. Journal of Applied Ecology, 36, 763-69.Google Scholar
  116. Långström, B., Annila, E., Hellqvist C., Varama, M. & Niemela, P. 2001a. Tree mortality, needle biomass recovery and growth losses in Scots pine following defoliation by Diprion pini(L.) and subsequent attack by Tomicus piniperda(L.). Scandinavian Journal of Forest Research 16, 342-53.Google Scholar
  117. Långström, B. & Hellqvist, C. 1988. Scots pine resistance against Tomicus piniperdaas related to tree vitality and attack density. In: Integrated control of scolytid bark beetles, Payne, T.L., Saarenmaa, H. (eds), Procedings of the IUFRO working party and XVII International congress of entomology symposium, Vancouver, B.C., Canada, July 4 1988.Google Scholar
  118. Långström, B. & Hellqvist, C. 1993a. Induced and spontaneous attacks by pine shoot beetles on young Scots pine trees: tree mortality and beetle performances. Journal of Applied Entomology, 115, 25-36.Google Scholar
  119. Långström, B. & Hellqvist, C. 1993b. Scots pine susceptibility to attack by Tomicus piniperda(L) as related to pruning date and attack density. Annales des Sciences Forestières 50, 101-17.Google Scholar
  120. Långström, B., Hellqvist C. & Ehnström B., 1999. Susceptibility of fire-damaged Scots pine (Pinus sylvestrisL.) to attack by Tomicus piniperda L. In. Physiology and Genetics of Tree-Phytophage Interactions, F. Lieutier, W.J. Mattson, M.R. Wagner (Eds). Versailles: INRA Editions.Google Scholar
  121. Långström, B., Hellqvist, C., Ericsson, A. & Gref, D. 1992. Induced defence reaction in Scots pine following stem attacks by Tomicus piniperda L. Ecography, 15, 318-27.Google Scholar
  122. Långström B., Solheim, H., Hellqvist, C. & Gref, R. 1993. Effects of pruning young Scots pines on host vigour and susceptibility to Leptographium wingfieldii and Ophiostoma minus, two blue-stain fungi associated with Tomicus piniperda. European Journal of Forest Pathology 23, 400-15.Google Scholar
  123. Långström, B., Solheim, H., Hellqvist, C. & Krokene, P. 2001b. Host resistance in defoliated Scots pine: effects of single and mass inoculations using bark beetle-associated blue-stain fungi. Agricultural and Forest Entomology 3, 211-16.Google Scholar
  124. Lanz, W., Skwara, P. & Grodski, W. 1993. Bark beetle attack on immission-damaged Norway spruce stands in Silesia. Allgemeine Forst Zeitschrift, 48, 670-73.Google Scholar
  125. Larsson, S., Oren, R., Waring, R.H. & Barrett, J.W., 1983. Attacks of mountain pine beetle as related to tree vigor of ponderosa pine. Forest Science, 29, 395-402.Google Scholar
  126. Lévieux, J. Jactel, H. & Lieutier, F. 1988. Preliminary study of variability in sap pressure of Scots pine clones in central France. Annales des Sciences Forestières, 45, 341-55.Google Scholar
  127. Lieutier, F. 1992. Les réactions de défense des conifères et stratégies d’attaques de quelques Scolytides européens. Mémoires de la Société Royale Belge d’Entomolologie, 35, 529-39.Google Scholar
  128. Lieutier, F. 1993. Induced defence reaction of conifers to bark beetles and their associated Ophiostomaspecies. In. Ceratocystis and Ophiostoma. Taxonomy, Ecology, and Pathogenicity, M.J. Wingfield, K.A. Seifert, J.F. Webber (Eds.). Saint Paul: APS Press.Google Scholar
  129. Lieutier, F. 1995. Associated fungi, induced reaction and attack strategy of Tomicus piniperda(Coleoptera: Scolytidae) in Scots pine. In. Behavior, Population Dynamics and Control of Forest Insects , F.P. Hain, S.M. Salom, W.F. Ravlin, T.L. Payne, K.F. Raffa (Eds.). Proceedings International Union Forestry Research Organizations Joint Conference, 1994 February 6-11, Maui, Hawaï.Google Scholar
  130. Lieutier, F. 2002. Mechanisms of resistance in conifers and bark beetle attack strategies. In. Mechanisms and Deployment of Resistance in Trees to Insects, M.R. Wagner, K.M. Clancy, F. Lieutier, T.D. Paine (Eds), Dordrecht, Kluwer.Google Scholar
  131. Lieutier, F. & Berryman, A.A. 1988. Preliminary histological investigations on the defence reactions of three pines to Ceratocystis clavigeraand two chemical elicitors. Canadian Journal of Forest Research, 18, 1243-47.Google Scholar
  132. Lieutier, F., Berryman, A.A. & Millstein, J.A. 1991a. Preliminary study of the monoterpene response of three pines to Ophiostoma clavigerum (Ascomycetes: Ophiostomatales) and two chemivcal elicitors. Annales des Sciences Forestières, 48, 377-88.Google Scholar
  133. Lieutier, F., Brignolas, F., Picron, V., Yart A. & Bastien, C. 1996a. Can Phloem Phenols Be Used as Markers of Scots Pine Resistance to Bark Beetles ? In. Dynamics of Forest Herbivory: Quest for Pattern and Principle, W.J. Mattson, P. Niemela, M. Rousi (Eds.). USDA Forest Service General Techical Report NC-183.Google Scholar
  134. Lieutier F., Brignolas F., Sauvard D., Yart A., Galet C., Brunet M. & Van de Sype H., 2003a. Intra- and inter-provenance variability in phloem polyphenols of Picea abies (L.) KARST. and relation with resistance to a bark-beetle-associated fungus. Tree physiology, 23, 247-56.Google Scholar
  135. Lieutier, F., Brignolas, F., Yart, A., Grodski, W., Jakus, R. & Sauvard, D. 2003b. Field validation of phenolics as predictors of Norway spruce resistance to Ips typographus attacks during a finishing outbreak. IUFRO Working Party meeting “Forest Insect Population Dynamics and Host Influences”, September 14-19, Kanazawa, Japan.Google Scholar
  136. Lieutier, F., Cheniclet, C. & Garcia, J. 1989a. Comparison of the defence reactions of Pinus pinaster and Pinus sylvestris to attacks by two bark beetles (Coleoptera: Scolytidae) and their associated fungi. Environmental Entomology, 18, 228-34.Google Scholar
  137. Lieutier, F., Faure, T. & Garcia, J. 1988a. Les attaques de Scolytes et le dépérissement du pin sylvestre en Provence - Côte d’Azur. Revue forestière française, 40, 224-32.Google Scholar
  138. Lieutier, F. & Ferrell, G.Y. 1988. Relationships between indexes of tree vigour and the induced defence reaction of Scots pine to a fungus associated with Ips sexdentatus Boern. (Coleoptera: Scolytidae). In:.b Integrated control of scolytid bark beetles, Payne, T.L., Saarenmaa, H. (eds), Procedings of the IUFRO working party and XVII International congress of entomology symposium, Vancouver, B.C., Canada, July 4 1988.Google Scholar
  139. Lieutier, F., Garcia, J., Romary, P. & Yart, A. 1995. Wound reactions of Scots pine (Pinus sylvestris L.) to attacks by Tomicus piniperda L. and Ips sexdentatus Boern. (Coleoptera: Scolytidae). Journal of Applied Entomology, 119, 591-600.Google Scholar
  140. Lieutier, F., Garcia, J., Romary, P., Yart, A., Jactel, H. & Sauvard, D. 1993. Inter-tree variability in the induced defence reaction of Scots pine to single inoculations by Ophiostoma brunneo-ciliatum a bark beetle-associated fungus. Forest Ecology and Management, 59, 257-70.Google Scholar
  141. Lieutier, F., Långström, B., Solheim, H., Hellqvist, C. & Yart, A. 1996b. Genetic and Phenotypic Variation in the Induced Reaction of Scots Pine, Pinus SylvestrisL., to Leptographium WingfieldiiReaction Zone Length and Fungal Growth . . In. Dynamics of Forest Herbivory: Quest for Pattern and Principle, W.J. Mattson, P. Niemela, M. Rousi (Eds.). USDA Forest Service General Technical Report NC-183.Google Scholar
  142. Lieutier, F., Sauvard, D., Brignolas, F., Picron, V., Yart, A., Bastien, C. & Jay-Allemand, C. 1996c. Changes in phenolic metabolites of Scots-pine phloem induced by Ophiostoma brunneo-ciliatum, a bark-beetle-associated fungus. European Journal of Forest Pathology, 26, 145-58.Google Scholar
  143. Lieutier, F., Vouland, G., Pettinetti, M., Garcia, J., Romary, P. & Yart, A. 1992. Defence reactions of Norway spruce (Picea abiesKarst.) to artificial insertion of Dendroctonus micans Kug. (Col. Scolytidae). Journal applied Entomology, 114, 174-86.Google Scholar
  144. Lieutier, F., Yart, A., Garcia, J. & Ham, M-C. 1990. Cinétique de croissance des champignons associés á Ips sexdentatusBoern. et à Tomicus piniperda L. (Coleoptera: Scolytidae) et des réactions de défense des pins sylvestres (Pinus sylvestris L.) inoculés. Agronomie, 10, 243-56.Google Scholar
  145. Lieutier, F., Yart, A., Garcia, J., Ham, M-C., Morelet, M. & Lévieux, J. 1989b. Champignons phytopathogènes associés á deux coléoptères scolytidae du pin sylvestre (Pinus sylvestris L.) et étude préliminaire de leur agressivité envers l’hôte. Annales des Sciences Foresiéres, 46, 201-16.Google Scholar
  146. Lieutier, F., Yart, A., Garcia, J., Poupinel, B. & Lévieux, J. 1988b. Do Fungi Influence the Establishment of Bark Beetles in Scots Pine ? In. Mechanisms of Woody Plant Defences Against Insects: Search for Pattern, W.J. Mattson, J. Lévieux, C. Bernard-Dagan (Eds.). New York: Springer.Google Scholar
  147. Lieutier, F., Yart, A., Jay-Allemand, C. & Delorme, L. 1991b. Preliminary investigations on phenolics as a response of Scots pine phloem to attacks by bark beetles and associated fungi. European Journal of Forest Pathology, 21, 354-54.Google Scholar
  148. Lieutier, F., Yart A., Ye H., Sauvard D. & Gallois V. 2004. Between-isolate variations in the performances of Leptographium wingfieldii Morelet, a fungus associated with the bark beetle Tomicus piniperda L. Annals of Forest Sciences, in press.Google Scholar
  149. Lieutier, F., Ye, H. & Yart, A. 2003c. Shoot damage by Tomicus sp. (Coleoptera: Scolytidae) and effect Pinus yunnanensis resistance to subsequent reproductive attacks on the stem. Agricultural and Forest Entomology 5, 227-33.Google Scholar
  150. Lombardero, M.J., Ayres, M.P., Lorio, P.L., Jr. & Ruel, J.J. 2000. Environmental effects on constitutive and inducible resin defences of P. taeda. Ecology Letters, 3, 329-339.Google Scholar
  151. Loomis, W.E. 1932. Growth-differentiation balance vs carbohydrate-nitrogen ration. Proceedings of the American Society of Horticultural Science, 29, 240-45.Google Scholar
  152. Lorio, P.L., Jr. 1986. Growth-differentiation balance: a basis for understanding southern pine beetle-tree interactions. Forest Ecology and Management, 14, 259-73.Google Scholar
  153. Lorio, P.L., Jr. & Hodges, J.D. 1968a. Oleoresin exudation pressure and relative water content of inner bark as indicators of moisture stress in loblolly pines. Forest Science, 14, 392-98.Google Scholar
  154. Lorio, P.L., Jr. & Hodges, J.D. 1968b. Microsite effect on oleoresin exudation pressure of large loblolly pines. Ecology, 49, p1207-10.Google Scholar
  155. Lorio, P.L., Jr. & Hodges, J.D. 1977. Tree water status affects induced southern pine beetle attacks and brood production. USDA Forest Service Research Paper SO-135.Google Scholar
  156. Lorio, P.L., Jr. & Sommers, R.A. 1986. Evidence for competition for photosynthates between growth processes and oleoresin synthesis in Pinus taeda L. Tree physiology, 2, 301-06.Google Scholar
  157. Lorio, P.L., Stephen, F.M. & Paine, T.D. 1995. Environment and ontogeny modify loblolly pine response to induced acute water deficits and bark beetle attacks. Forest Ecology and Management, 73, 97-110.Google Scholar
  158. Löyttyniemi, K. 1978. (In Finnish) Effect of forest fertilization on pine shoot beetles (Tomicus spp., Col., Scolytidae). Folia Forestalia, 348, 1-19.Google Scholar
  159. Martin, D., Tholl, D., Gershenzon, J. & Bohlmann, J. 2002. Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis and terpenoid accumulation in developing xylem of Norway spruce (Picea abies) stems. Plant Physiology, 129, 1003-18.PubMedGoogle Scholar
  160. Mason R.R. 1971. Soil moisture and stand density affect oleoresin exudation flow in a loblolly pine plantation. Forest Science, 17, 170-77.Google Scholar
  161. Matson, P.A., Hain, F.P. & Mawby, W. 1987. Indices of tree susceptibility to bark beetles vary with silvicultural treatment in a loblolly pine plantation. Forest Ecology and Management 22, 107-18. Mattson, W.J. & Haack, R.A. 1987. The role of drought in outbreaks of plant-eating insects. Bioscience, 37, 110-118.Google Scholar
  162. McMullen, L.H., Fiddick, R.L. & Wood, R.O. 1981. Bark beetles, Pseudohylesinus spp.(Coleoptera: Scolytidae), associated with amabilis fir defoliated by Neodiprionsp. (Hymenoptera: Diprionidae). Journal of the Entomological Society of British Columbia 78, 43-45.Google Scholar
  163. Mergen, F., Hoekstra, P.E. & Echols, R.M. 1955. Genetic control of oleoresin yield and viscosity in slash pine. Forest Science, 1, 19-30.Google Scholar
  164. Miller, P.R., Cobb, F.W., Jr. & Zavarin, E. 1968. Photochemical oxidant injury and bark beetles (Coleoptera: Scolytidae) infestation of ponderosa pine. III. Effect of injury upon oleoresin composition, phloem carbohydrates, and phloem pH. Hilgardia, 39, 135-40.Google Scholar
  165. Miller, R.H. & Berryman, A.A. 1986. Nutrient allocation and mountain pine beetle attack in girdled lodgepole pines. Canadian Journal of Forest Research, 16, 1036-40.Google Scholar
  166. Miller, R.H., Whitney, H.S. & Berryman, A.A. 1986. Effects of induced translocation stress and bark beetle attack (Dendroctonus ponderosae) on heat pulse velocity and the dynamic wound response of lodgepole pine (Pinus contorta var. latifolia). Canadian Journal of Botany, 64, 2669-74.Google Scholar
  167. Mitchell, R.G., Waring, R.H. & Pitman, G.B. 1983. Thinning lodgepole pine increases tree vigor and resistance to mountain pine beetle. Forest Science, 29, 204-11.Google Scholar
  168. Moore, G.E. & Layman, H.F. 1978. Attempts to increase resistance of loblolly pines to bark beetles by fertilization. USDA Forest Service Research Note SE-260.Google Scholar
  169. Müllick, D.B. 1977. The non-specific nature of defence in bark and wood during wounding, insect, and pathogen attack. Recent advances in phytochemistry, 11, 359-441.Google Scholar
  170. Mulock, P. & Christiansen, E. 1986. The threshold of successful attack by Ips typographus on Picea abies: a field experiment. Forest Ecology and Management, 14, 125-132.Google Scholar
  171. Nageleisen, L.M. 2002. Le point sur les attaques des Scolytes des résineux en fin d’année 2001 suite aux tempêtes de décembre 1999 et les mesures de lutte mises en œuvre. Les Cahiers du DSF, 1-2002 [La Santé des Forêts (France) 2000, 2001], Ministère de l’Agriculture, de l’Alimentation, de la Pêche et des Affaires Rurales (DERF), Paris.Google Scholar
  172. Nageleisen, L.M. 2003. Le point sur les attaques des Scolytes des résineux en fin d’année 2002 suite aux tempêtes de décembre 1999 et les mesures de lutte mises en œuvre. Les Cahiers du DSF,sous presse ,Ministère de l’Agriculture, de l’Alimentation, de la Pêche et des Affaires Rurales (DERF), ParisGoogle Scholar
  173. Nagy, N.E., Franceschi, V.R., Solheim, H., Krekling, T. & Christiansen, E. 2000. Wound-induced traumatic resin duct development in stems of Norway spruce (Pinaceae): anatomy, and cytological traits. American Journal of Botany, 87,302-13.PubMedGoogle Scholar
  174. Nebeker, T.E., Hodges, J.D., Honea, C.R. & Blanche, C.A. 1988. Preformed Defensive System in Loblolly Pine: Variability and Impact on Management Practices . In. Integrated Control of Scolytid Bark Beetles, T.L. Payne, H. Saarenmaa (Eds.). Blacksburg, VA: Virginia Polytechnic Institute Press.Google Scholar
  175. Nebeker, T.E., Hodges, J.D., Blanche, C.A., Honea, C.R. & Tisdale, R.A., 1992. Variation in the constitutive defensive system of Loblolly pine in relation to bark beetle attack. Forest Science, 38, 457-66.Google Scholar
  176. Nihoul, D., Nef. & Waterkeyn, L. 1989. Variability between and within individuals in some anatomical characteristics of the bark of Norway spruce (Picea abies) in the Belgian Ardennes. Annales des Sciences Forestières, 46, 85-95.Google Scholar
  177. Paine T.D., 1984. Seasonal response of ponderosa pine to inoculation of the mycangial from the western pine beetle. Canadian Journal of Botany, 62, 551-55.Google Scholar
  178. Paine T.D. & Hanlon, C.C. 1994. Influence of oleoresin constituents from Pinus ponderosaand Pinus jeffreyi on the growth of the mycangial fungi from Dendroctonus ponderosaeand Dendroctonus brevicomis. Journal of Chemical Ecology, 20, 2551-63.Google Scholar
  179. Paine, T.D., Raffa, K.F. & Harrington, T.C. 1997. Interactions among scolytids bark beetles, their associated fungi, and live host conifers. Annual Review of Entomology, 42, 179-206.PubMedGoogle Scholar
  180. Paine T.D., Stephen F.M. & Cates R.G., 1993. Within and among tree variation in the response of loblolly pine to a fungus associated with Dendroctonus frontalis (Coleoptera: Scolytidae) and sterile wounding. The Canadian Entomologist, 125, 65-71.Google Scholar
  181. Pesson, P. & Chararas, C. 1969. Les Scolytides, insectes ravageurs mondiaux des forêts de conifères. L’année biologique, 8, 683-733.Google Scholar
  182. Raffa, K.F. 1991. Induced defensive reactions in conifer-bark beetle systems. In. Phytochemical induction by herbivores, D.W. Tallamy, M.J. Raupp (Eds), Wiley & Sons, New York.Google Scholar
  183. Raffa, K.F. & Berryman, A.A. 1982a. Physiological differences between lodgepole pines resistant and susceptible to the mountain pine beetle and associated microorganisms. Environmental Entomology, 11, 486-92.Google Scholar
  184. Raffa, K.F. & Berryman, A.A., 1982b. Accumulation of monoterpenes and associated volatiles following fungal inoculation of grand fir with a fungus transmitted by the fir engraver Scolytus ventralis(Coleoptera: Scolytidae). The Canadian Entomologist, 114, 797-810.Google Scholar
  185. Raffa, K.F. & Berryman, A.A. 1983a. The role of host plant resistance in the colonization behavior and ecology of bark beetles (Coleoptera: Scolytidae). Ecological Monographs, 53, 27-49.Google Scholar
  186. Raffa, K.F. & Berryman, A.A. 1983b. Physiological aspects of lodgepole pine wound responses to a fungal symbiont of the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae). The Canadian Entomologist, 115, 723-34.Google Scholar
  187. Raffa, K.F., Berryman, A.A., Simasko J., Teal W. & Wong B.L. 1985. Effects of grant fir monoterpenes on the fire engraver, Scolytus ventralis (Coleoptera: Scolytidae), and its symbiotic fungus. Environmental Entomology, 14, 552-56.Google Scholar
  188. Raffa, K.F. & Klepzig, K.D. 1996. Effects of root inhabiting insect-fungal complexes on aspects of tree resistance to bark beetles. In: Dynamics of forest herbivory: quest for pattern and principle, W.J. Mattson, P. Niemela, M. Rousi (Eds), USDA Forest Service General Technical Report NC-183.Google Scholar
  189. Raffa, K.F., Krause, S.C. & Reich, P.B. 1998. Long term effects of defoliation on red pine suitability to insects feeding on diverse plant tissues. Ecology 79, 2352-64.Google Scholar
  190. Raffa, K.F. & Smalley, E.B. n1995. Interaction of pre-attack and induced monoterpene concentrations in host conifer defence against bark beetle-fungal complexes. Oecologia, 102, 285-95.Google Scholar
  191. Rasmussen, L.A. 1987. Mountain pine beetle selection of dwarf mistletoe and Comandra blister rust infected lodgepole pine. USDA Forest Service Research Note INT-367.Google Scholar
  192. Rasmussen, L.A., Amman, G.D., Vandygriff, J.C., Oakes, R.D., Munson, A.S. & Gibson, K.E. 1996. Bark beetle and wood borer infestation in the greater Yellowstone area during four postfire years. USDA Forest Service Research Paper INT-RP-487.Google Scholar
  193. Reid, R.W. & Gates H. 1970. Effect of temperature and resin on hatch of eggs of the mountain pine beetle (Dendroctonus ponderosae). The Canadian Entomologist, 102, 617-22.Google Scholar
  194. Reid, R.W. & Shrimpton, D.M., 1971. Resistant response of lodgepole pine to inoculation with Europhium clavigerumin different months and at different heights on stem. Canadian Journal of Botany, 49, 349-51.Google Scholar
  195. Reid, R.W., Whitney, H.S. & Watson, J.A. 1967. Reactions of lodgepole pine to attack by Dendroctonus ponderosae Hopkins and blue stain fungi. Canadian Journal of Botany, 45, 115-26. Rudinsky, J.A. 1962. Ecology of Scolytidae. Annual Review Entomology, 7, 327-48.Google Scholar
  196. Rudinsky, J.A., 1966. Host selection and invasion by the Douglas fir beetle, Dendroctonus pseudotsugaeHopkins, in coastal Douglas-fir forests. The Canadian Entomologist, 98, 98-111.Google Scholar
  197. Ruel, J.J., Ayres, M.P. & Lorio, P.L., Jr. 1998. Loblolly pine responds to mechanical wounding with increased resin flow. Canadian Journal of Forest Research, 28, 596-602.Google Scholar
  198. Safranyik, L., Shrimpton, D.M. & Whitney, H.S. 1975. An interpretation of the interaction between lodgepole pine, the mounain pine beetle and its associated blue stain fungi in western Canada. In. Management of Lodgepole Pine Ecosystems, D. Baumgartner (Ed.), Pullman: Washington State University Cooperative Extension Service.Google Scholar
  199. Sandness, A. & Solheim, H., 2002. Variation in tree size and resistance to Ceratocystis polonicain a monoclonal stand of Picea abies. Scandinavian Journal of Forest Research, 17, 522-28.Google Scholar
  200. Santoro, A.E., Lombardero, M.J., Ayres, M.P. & Ruel, J.J. 2001. Interactions between fire and bark beetles in an old growth pine forest. Forest Ecology and Management, 144, 245-54.Google Scholar
  201. Schroeder, M. 1990. Duct resin flow in Scots pine to the attack of the bark beetle Tomicus piniperdaL. (Col., Scolytidae). Journal of applied Entomology, 109, 105-12.Google Scholar
  202. Schwertfeger, F. 1944. Die Waldkrankheiten. Ein Lehrbuch der Forstpathologie und des ForstschutzesXVI, 479 p.Google Scholar
  203. Shrimpton, D.M. 1973a. Extractives associated with wound response of lodgepole pine attacked by the mountain pine beetle and associated microorganisms. Canadian Journal of Botany, 51, 527-34Google Scholar
  204. Shrimpton, D.M., 1973b. Age- and size-related response of lodgepole pine to inoculation with Europhium clavigerum. Canadian Journal of Botany, 51, 1155-60.Google Scholar
  205. Shrimpton, D.M. & Whitney H.S. 1968. Inhibition of growth of blue stain fungi by wood extractives. Canadian Journal of Botany, 46, 757-61.Google Scholar
  206. Showalter, T.D. & Turchin, P. 1993. Southern pine beetle infestation development: interaction between pine and hardwood basal area. Forest Science, 39, 201-10.Google Scholar
  207. Smith, R.H. 1963. Toxicity of pine resin vapors to 3 species of Dendroctonus bark beetles. Journal of Economic Entomology, 56, 827-31.Google Scholar
  208. Solheim, H. & Långström B. 1991. Blue stain fungi associated with Tomicus piniperda in Sweden and preliminary observation on their pathogenicity. Annales des Sciences Forestières, 48, 149-56.Google Scholar
  209. Solheim, H., Långström, B. & Hellqvist, C. 1993. Pathogenicity of the blue-stain fungi Leptographium wingfieldii and Ophiostoma minus to Scots pine: effect of the tree pruning and inoculum density. Canadian Journal of Forest Research, 23, 1438-43.Google Scholar
  210. Stark, R.W., Miller, P.R., Cobb, F.W., Jr., Wood, D.L. & Parmeter, J.R., Jr. 1968. Photochemical oxidant injury and bark beetles (Coleoptera: Scolytidae) infestation of ponderosa pine. I. Incidence of bark beetle infestation in injured trees. Hilgardia, 39, 121-26.Google Scholar
  211. Steele, C.L., Lewinsohn, E. & Croteau, R. 1995. Induced oleoresin biosynthesis in grand fir as a defence against bark beetles. Proceedings National Academy of Sciences USA, 92, 4164-68.Google Scholar
  212. Stephen F.M., Paine T.D., 1985. Seasonal patterns of host resistance to fungal associates of the southern pine beetle. Zeitschrift für Angewandte Entomologie, 99, 113-22.Google Scholar
  213. Storer, A.J. & Speight, M.R. 1996. Relationships between Dendroctonus micans Kug. (Coleoptera: Scolytidae) survival and development and biochemical changes in Norway spruce, Picea abies (L.) Karst., phloem caused by mechanical wounding. Journal of Chemical Ecology, 22, 559-73.Google Scholar
  214. Thalenhorst W., 1958. Grundzüge der populationsdynamik des grössen Fichten-borkenkäfer Ips typographus L. Shriftenreihe der Forstlichen Fakültat der Universität Göttingen, 21.Google Scholar
  215. Tisdale, R.A. & Nebeker, T.E. 1992. Resin flow as a function of height along the bole of loblolly pine. Canadian Journal of Botany, 70, 2509-11.Google Scholar
  216. Tkacz, B.M. & Schmitz, R.F. 1986. Association of an endemic mountain pine beetle population with lodgepole pine infected by Armillaria root disease in Utah. USDA Forest Service Research Note INT-353.Google Scholar
  217. Tobolski, J.J. & Hanover, J.W., 1971. Genetic variations in the monoterpenes of Scotch pine. Forest Science, 17, 293-99.Google Scholar
  218. Tuomi, J., Fagerstrom, T. & Niemela, P. 1991. Carbon allocation, phenotypic plasticity, and induced defences. In. Phytochemical induction by herbivores, D.W. Tallamy, M.J. Raupp (Eds), Wiley & Sons, New York.Google Scholar
  219. Vetrova, V.P., Stasova, V.V. & Pashenova, N.V. 1999. Effect of defoliation on resistance response of Abies sibiricaLedeb. to inoculation with blue-stain fungi. In: Physiology and genetics of tree phytophage interactions, F. Lieutier, W.J. Mattson, M.R. Wagner (Eds), INRA, Versailles.Google Scholar
  220. Viiri, H., Annila, E., Kitunen, V. & Niemela, P. 2001. Induced responses in stilbenes and terpenes in fertilized Norway spruce after inoculation with blue-stain fungus, Ceratocystis polonica. Trees, 15, 112-22.Google Scholar
  221. Viiri, H., Kytö & Niemela, P. 1999. Resistance of fertilized Norway spruce (Picea abies(L.) Karst.) and Scots pine (Pinus sylvestris L.). In. Physiology and Genetics of Tree-Phytophage Interactions, F. Lieutier, W.J. Mattson, M.R. Wagner (Eds). Versailles: INRA Editions.Google Scholar
  222. Vité, J.P., 1961. The influence of water supply on oleoresin exudation pressure and resistance to bark beetle attack in Pinus ponderosa. Contribution Boyce Thompson Institute, 21, 37-66.Google Scholar
  223. Vité, J.P. & Wood, D.L. 1961. A study of the applicability of the measurement of oleoresin exudation pressure in determining susceptibility of second-growth ponderosa pine to bark beetle infestation. Contribution Boyce Thompson Institute, 21, 67-78.Google Scholar
  224. Vouland, G. 1991. Le Dendroctone de l’Epicea: Dendroctonus micans Kug. (Col.: Scolytidae) dans le Massif Central. Thèse Université Aix-Marseille III.Google Scholar
  225. Wainhouse, D., Cross, D.J. & Howell, R.S. 1990. The role of lignin as a defence against the spruce bark beetle Dendroctonus micans: effects on larvae and adults. Oecologia 85, 257-65.Google Scholar
  226. Wainhouse, D., Ashburner, R., Ward, E. & Boswell, R. 1997. The effect of lignin and bark wounding on susceptibility of spruce trees to Dendroctonus micans. Journal of Chemical Ecology 24, 1551-61.Google Scholar
  227. Wainhouse, D., Rose, D.R. & Pearce, A.J. 1998a. The influence of preformed defences on the dynamic wound response in Spruce bark. Functional Ecology 11, 564-72.Google Scholar
  228. Wainhouse, D., Ashburner, E., Ward, E. & Rose, J. 1998b. The effect of variation of light and nitrogen on growth and defence in young Sitka spruce. Functional Ecology, 12, 561-72.Google Scholar
  229. Wallin, K.F., Kolb, T.E., Skov, K.R. & Wagner, M.R. 2003. Effects of scorch on ponderosa pine resistance to bark beetles in northern Arizona. Environmental Entomology, 32, 652-61.Google Scholar
  230. Wallin, K.F. & Raffa, K.F. 1999. Altered constitutive and inducible phloem monoterpenes following natural defoliation of Jack pine: implications to host mediated interguild interactions and plant defence theories. Journal of Chemical ecology 25, 861-80.Google Scholar
  231. Wallin, K.F. & Raffa, K.F. 2001. Effects of folivory on subcortical plant defences: can defence theories predict interguild processes? Ecology, 82, 1387-1400.Google Scholar
  232. Waring, R.H. & Pitman, G.B. 1983. Physiological stress in lodgepole pine as a precursor for mountain pine beetle attack. Zeitschrift für angwandte Entomologie, 96, 265-70.Google Scholar
  233. Waring, R.H. & Pitman, G.B. 1985. Modifying lodgepole pine stands to change susceptibility to mountain pine beetle attack. Ecology 66, 889-97.Google Scholar
  234. Warren, J.M., Allen, H.L. & Booker, F.L. 1999. Mineral nutrition, resin flow and phloem phytochemistry in loblolly pine. Tree Physiology, 19, 655-63.PubMedGoogle Scholar
  235. Wong, B.L. & Berryman, A.A. 1977. Host resistance to the fir engraver beetle. 3. Lesion development and containment of infection in resistant Abies grandis inoculated with Trichosporium symboticumCanadian Journal of Botany, 55, 1358-65.Google Scholar
  236. White, T.C.R. 1984. The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed foods. Oecologia, 63, 90-105.Google Scholar
  237. Wilkinson, R.C. 1979. Tunnelling in slash pine by Ips calligraphus (Germ). Florida Entomologist, 62, 72-73.Google Scholar
  238. Witanachchi, J.P. & Morgan, F.D. 1981. Behavior of the bark beetle, Ips grandicollis, during host selection. Physiological Entomology, 6, 219-23.Google Scholar
  239. Wright, L.C., Berryman, A.A. & Gurusiddaiah, S. 1979. Host resistance to the fir engraver beetle, Scolytus ventralis (Coleoptera: Scolytidae) 4. Effect of defoliation on wound monoterpene and inner bark carbohydrate concentrations. Canadian Entomologist 111, 1255-62.Google Scholar
  240. Wright, L.C., Berryman, A.A. &, Wickman, B.E. 1984. Abundance of the fir engraver, Scolytus ventralis and the Douglas-fir beetle, Dendroctonus pseudotsugae, following tree defoliation by the Douglas-fir tussock moth, Orgyia pseudotsugata. Canadian Entomologist 116, 293-305.Google Scholar
  241. Ye, H. & Lieutier, F. 1997. Shoot aggregation by Tomicus piniperda(Col; Scolytidae) in Yunnan, southwestern China. Annales des Sciences Forestières, 54, 635-41.Google Scholar
  242. Ye H. & Lieutier F. 2001. Seasonal variations in Pinus yunnanensis natural resistance to artificial fungus inoculation, in relation with water stress. Final plenary workshop of the EU project ERBIC 18CT96 0057 ‘‘Definition of methods to protect conifers from insects compromising forest survival and regeneration in the mountain areas of Southwestern China’’. 27-31 May. Lijiang, China.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • F. Lieutier
    • 1
  1. 1.Université d’Orléans, rue de ChartresB.P. 6759, F-45067 Orléans CedexFrance

Personalised recommendations