Emissions from volcanoes

  • Christiane Textor
  • Hans-F. Graf
  • Claudia Timmreck
  • Alan Robock
Part of the Advances in Global Change Research book series (AGLO, volume 18)


Around 380 volcanoes were active during the last century, with around 50 volcanoes active per year (Andres and Kasgnoc, 1998). Volcanic activity is not randomly distributed over the Earth, but is linked to the active zones of plate tectonics, as shown in figure 1. More than 2/3 of the world’s volcanoes are located in the northern hemisphere, and in tropical regions. The emission of volcanic gases depends on the thermodynamic conditions (pressure, temperature) and on the magma type (i.e., its chemical composition, which in turn depends on the tectonic environment).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andres, R. J., and W. I. Rose, Remote sensing spectroscopy of volcanic plumes and clouds, in Monitoring Active Volcanoes: Strategies, Procedures and Techniques, edited by B. McGuire, C. Kilburn, and J. Murray, pp. 301–314, UCL Press Limited, London, 1995.Google Scholar
  2. Andres, R. J., and A. D. Kasgnoc, A time-averaged inventory of subaerial volcanic sulfur emissions, J. Geophys. Res., 103, 25 251–25. 261, 1998.Google Scholar
  3. Andronova, N. G., E. Rozanov, F. Yang, M. E. Schlesinger, and G. L. Stenchikov, Radiative forcing by volcanic aerosols from 1850 through 1994, J. Geophys. Res., 104, 16807–16826, 1999.Google Scholar
  4. Angell, J. K., Stratospheric warming due to Agung, El Chichön and Pinatubo taking into account the quasi-biennial oscillation, J. Geophys. Res., 102, 9479948, 1997a.Google Scholar
  5. Angell, J. K., Estimated impact of Agung, El Chichön and Pinatubo volcanic eruptions on global and regional total ozone after adjustment for the QBO, Geophys. Res. Lett., 24, 647–650, 1997b.Google Scholar
  6. Ansmann, A., U. Wandinger, and C. Weitkamp, One-year observations of Mount Pinatubo aerosol with an advanced Raman lidar over Germany at 53.5°N, Geophys. Res. Lett., 20, 711–714, 1993.Google Scholar
  7. Ansmann, A., I. Mattis, U. Wandinger, F. Wagner, J. Reichardt, and T. Deshler, Evolution of the Pinatubo Aerosol: Raman lidar observations of particle optical depth, effective radius, mass, and surface area over central Europe at 53.4°N, J. Atmos. Sci., 54, 2630–2641, 1997.Google Scholar
  8. Ansmann, A., I. Mattis, H. Jäger, and U. Wandinger, Stratospheric Aerosol Monitoring With Lidar: Conventional Backscatter versus Raman Lidar Observations of Mount- Pinatubo, Contributions to Atmospheric Physics. 213–222, 1998.Google Scholar
  9. Antuña, J. C., A. Robock, G. L. Stenchikov, L. W. Thomason, and J. E. Barnes, Lidar validation of SAGE II aerosol measurements after the 1991 Mount Pinatubo eruption. J. Geophys. Res., 107, 2002.Google Scholar
  10. Barnes, J.E., and D. J. Hofmann, Lidar measurements of stratospheric aerosol over Mauna Loa Observatory, Geophys. Res. Lett., 24, 1923–1926, 1997.Google Scholar
  11. Bartels, O. G., An estimate of volcanic contributions to the atmosphere and volcanic gases and sublimates as the source of the radio isotopes l0Be, 35S, and 22Na, Health Physics, 22, 387–392, 1972.Google Scholar
  12. Bekki, S., and J. A. Pyle, A two-dimensional modeling study of the volcanic eruption of Mount Pinatubo, J. Geophys. Res., 99, 18, 861–18, 869, 1994.Google Scholar
  13. Bekki, S., J. A. Pyle, W. Zhong, R. Toumi, J. D. Haigh und D. M. Pyle, The role of microphysical and chemical processes in prolonging the climate forcing of the Toba eruption, Geophys. Res. Lett., 23, 2669–2672, 1996.Google Scholar
  14. Berresheim, H., and W. Jaeschke, The contribution of volcanoes to the global atmospheric sulfur budget, J. Geophys. Res., 88, 3732–3740, 1983.Google Scholar
  15. Bluth, G. J. S., Doiron, S. D., Schnetzler, C. C., Krueger, A. J., and L. S. Walter, Global tracking of the SO2 clouds from the June, 1991 Mount Pinatubo eruptions, Geophys. Res. Lett., 19, 151–154, 1992.Google Scholar
  16. Bluth, G. J. S., C. C. Schnetzler, A. J. Krueger, and L. S. Walter, The contribution of explosive volcanism to global atmospheric sulphur dioxide concentrations, Nature, 366, 327–329, 1993.Google Scholar
  17. Bluth, G. J. S., C. J. Scott, I. E. Sprod, C. C. Schnetzler, A. J. Krueger, and L. S. Walter, Explosive SO2 emissions from the 1992 eruptions of Mount Spurr, Alaska. U.S. Geological Survey Bulletin, 2139, 37–45, 1995.Google Scholar
  18. Bluth, G. J. S., W. I. Rose, I. E. Sprod, and A. J. Krueger, Stratospheric loading of sulfur from explosive volcanic eruptions, Journal of Geology, 105, 671–684, 1997.Google Scholar
  19. Bösenberg, J., M. Alpers, C. Böckmann, H. Jäger, V. Mathias, T. Trickl, U. Wandinger, and M. Wiegner, A lidar network for the establishment of an aerosol climatology, Proceedings of the 19th International Laser Radar Conference, (Annapolis, July 6–10), NASA/CP-1998–207671/PT1, 23–24, 1998.Google Scholar
  20. Bureau H., H. Keppler, and N. Metrich, Volcanic degassing of bromine and iodine: experimental fluid/melt partitioning data and applications to stratospheric chemistry, Earth and Planetary Science Letters, 183, 51–60, 2000.Google Scholar
  21. Cadle, R. D., Volcanic emissions of halides and sulfur compounds to the troposphere and stratosphere, J. Geophys. Res., 80, 1650–1652, 1975.Google Scholar
  22. Cadle, R. D., A comparison of volcanic with other fluxes of atmospheric trace gas constituents, Rev. Geophys. Space Phys., 18, 746–752, 1980.Google Scholar
  23. Charlson, R. J., J. Langner, H. Rodhe, C. B. Leovy, and S. G. Warren, Perturbation of the Northern Hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols, Tellus,43, 152–163, 1991.Google Scholar
  24. Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, Jr., J. E. Hansen, and D. J. Hoffman, Climate forcing by anthropogenic aerosols, Science, 255, 423–430, 1992.Google Scholar
  25. Chazette, P. C. David, J. Lefrere, S. Godin, J. Pelon, and G. Megie, Comparative lidar study of the optical, geometrical and dynamical properties of stratospheric postvolcanic aerosols, following the eruptions of El Chichön and Mount Pinatubo, J. Geophys. Res., 101, 23195–23207,1995.Google Scholar
  26. Chin M., and D. D. Davis, Global sources and sinks of OCS and CS2 and their distributions, Global Biogeochemical Cycles, 7, 321–337, 1993.Google Scholar
  27. Crowley, T. J., T. A. Criste, and N. R. Smith, Reassessment of Crete (Greenland) ice core acidity/volcanism link to climate change, Geophys. Res. Lett., 20, 209–212, 1993.Google Scholar
  28. Crowley, T. J., and K.-Y. Kim, Modeling the temperature response to forced climate change over the last six centuries, Geophys. Res. Lett., 26, 1901–1904, 1999.Google Scholar
  29. Deshler, T., D. J. Hofmann, B. J. Johnson, and W. R. Rozier, Balloonborne measurements of the Pinatubo aerosol size distribution and volatility at Laramie, Wyoming during the summer of 1991, Geophys. Res. Lett., 19, 199–202, 1992Google Scholar
  30. Deshler, T., B. J. Johnson, and W. R. Rozier, Balloonborne measurements of Pinatubo aerosol during 1991 and 1992 at 41°N: vertical profiles, size distribution, and volatility, Geophys. Res. Lett., 20, 1435–1438, 1993.Google Scholar
  31. Deshler, T., G. B. Liley, G. Bodeker, W. A. Matthews, and D. J. Hofmann, Stratospheric aerosol following Pinatubo, comparison of the north and south mid latitudes using in situ measurements, Adv. Space Res., 20, 2057–2061, 1997.Google Scholar
  32. Facchini, M. C., S. Fuzzi, M. Kessel, W. Wobrock, W. Jaeschke, B. G. Arends, J. J. Mois, A. Berner, I. Solly, C. Kruisz, G. Reischl, S. Pahl, A. Hallberg, J. A. Ogren, H. Fierlinger-Oberlinninger, A. Marzorati, and D. Schell, The chemistry of sulfur and nitrogen species in a fog system: A multiphase approach, Tellus, 44B, 505–521, 1992.Google Scholar
  33. Fiocco, G., M. Cacciani, A. G. di Sarra, D. Fuà, P. Colagrande, G. De Benedetti, P. Di Girolano, and R. Viola, The evolution of the Pinatubo stratospheric aerosol layer observed by lidar at South Pole, Rome, Thule: A summary of results, in: The Mount Pinatubo Eruption: Effects on The Atmosphere and Climate, NATO ASI Series, 42, 17–32, 1996.Google Scholar
  34. Franklin, B., Meteorological imaginations and conjectures, Manchester Literary and Philosophical Society Memoirs and Proceedings 2, 122, 1784,Google Scholar
  35. Franklin, B., reprinted in Weatherwise 35, 262, 1982.Google Scholar
  36. Free, M., and Robock, A.: Global warming in the context of the Little Ice Age, J. Geophys. Res., 104, 19, 057–19, 070, 1999.Google Scholar
  37. Friend, J. P., The global sulfur cycle, in Chemistry of the Lower Atmosphere, edited by S. I. Rasool, 177–201, Plenum, New York, 1973.Google Scholar
  38. Fung, C. S., P. K. Misra, R. Bloxam, and S. Wong, A numerical experiment on the relative importance of H2O2 and O3 in aqueous conversion of SO2 to SO42-, Atmos. Env., 25A, 411–423, 1991.Google Scholar
  39. Gallagher, M. W., R. M. Downer, T. W. Choularton, M. J. Gay, I. Stromberg, C. S. Mill, M J Radojevic, B. J. Tyler, B. J. Bandy, S.A. Penkett, T. J. Davies, G. J. Dollard, and B. M. R. Jones, Case studies of the oxidation of sulphur dioxide in a hill cap cloud using ground and aircraft based measurements. J. Geophys. Res., 95, 18517–18537, 1990.Google Scholar
  40. Gerlach, T.M., and Casadevall, T.J., Fumarole emissions at Mount St. Helens Volcano, June 1980 to October 1981: Degassing of a magma-hydrothermal system: Journal of Volcanology and Geothermal Research, 28, 141–160, 1986.Google Scholar
  41. Gerlach, T.M., Present-day CO2 emissions from volcanoes, EOS, 72, 249, 254–255, 1991.Google Scholar
  42. Gerlach, T. M., H. R. Westlich, and R. B. Symonds, Preemption vapor in magma of the climactic Mount Pinatubo eruption: Source of the giant stratospheric sulfur dioxide cloud, in Newhall, C. G., and R. S. Punongbayan, eds., Fire and mud: Eruptions and lahars of Mount Pinatubo, Philippines: Philippine Institute of Volcanology and Seismology, Quezon City, and University of Washington Press, Seattle, 415–433, 1996.Google Scholar
  43. Graf, H-F., I. Kirchner, A. Robock, and I. Schult, Pinatubo eruption winter climate effects: Model versus observations, Climate Dynamics, 9, 81–93, 1993.Google Scholar
  44. Graf, H.-F., J. Perlwitz, and I. Kirchner, Northern Hemisphere tropospheric mid-latitude circulation after violent volcanic eruptions, Contributions to Atmospheric Physics [Beitrage zur Physik der Atmosphäre.], 67, 3–13, 1994.Google Scholar
  45. Graf, H.-F., J. Feichter, and B. Langmann, Volcanic sulfur emissions: Estimates of source strength and its contribution to the global sulfate distribution, J. Geophys. Res., 102, 10727–10738, 1997.Google Scholar
  46. Graf, H.-F., B. Langmann, and J. Feichter, The contribution of Earth degassing to the atmospheric sulfur budget, Chemical Geology, 147, 131–145, 1998.Google Scholar
  47. Graf, H.-F., M. Herzog, J. M. Oberhuber, and C. Textor, The effect of environmental conditions on volcanic plume rise, J. Geophys. Res., 104, 24, 309, 1999.Google Scholar
  48. Graf, H.-F., and C. Timmreck, A general climate model simulation of the aerosol radiative effects of the Laacher See eruption (10,900 BC), J. Geophys. Res., 106, 14, 747–14,756, 2001.Google Scholar
  49. Granat, L., H. Rodhe, and R. O. Hallberg, The global sulphur cycle, in Nitrogen, Phosphorous and Sulphur-Global Cycles, edited by B. H. Svensson, and R. Söderlund, SCOPE Report 7, Ecological Bulletin, 22, 89–134, 1976.Google Scholar
  50. Grant, W. B., E. V. Browell, J. Fishman. V. G. Brackett. R. E. Veiga, D. Nganga. A. Minga, B. Cros. C. F. Butler. M. A. Fenn, C. S. Long, and L. L Stowe, Aerosol-associated changes in tropical stratospheric ozone following the eruption of Mount Pinatubo, J. Geophys. Res., 99, 8197–8211, 1994.Google Scholar
  51. Granier, C., and G. Brasseur, Impact of heterogeneous chemistry on model predictions of ozone changes, J. Geophys. Res., 97, 18015–18033, 1992.Google Scholar
  52. Grgi, I., Hudnik, V., Bizjak, M., and J. Levec, Aqueous S(IV) oxidation-I. Catalytic effects of some metal ions, Atmos. Env., 25A, 1591–1597, 1991.Google Scholar
  53. Groisman, P. Y., Regional climate consequences of volcanic eruptions (in Russian), Meteorol. Hydrol., 4, 39–45, 1985.Google Scholar
  54. Halmer, M. M., H.-U. Schmincke, and H.-F. Graf, The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years, Journal of Volcanology and Geothermal Research, 115, 511–528, 2002.Google Scholar
  55. Hammer, C.U., H.B. Clausen, and W. Dansgaard, Greenland ice sheet evidence of post-glacial volcanism and its climate impact, Nature, 288, 230–235, 1980.Google Scholar
  56. Hansen, A. D. A., W. H. Benner, and T. Novakov, Sulfur dioxide oxidation in laboratory clouds, Atmos. Env., 25A, 2521–2530, 1991.Google Scholar
  57. Herzog, M., H.-F. Graf, C. Textor, and J. M. Oberhuber, The effect of phase changes of water on the development of volcanic plumes, Journal of Volcanology and Geothermal Research, 87, 55–74, 1998.Google Scholar
  58. Hitchman, M. H., M. McKay, and C. R. Trepte, A climatology of stratospheric aerosol, J. Geophys. Res., 99, 20, 689–20, 700, 1994.Google Scholar
  59. Hofmann, D. J., J. M. Rosen, R. Reiter, and H. Jager, Lidar- and balloon-borne particle counter comparisons following recent volcanic eruptions, J. Geophys. Res., 88, 3777–3782, 1983.Google Scholar
  60. Hofmann, D. J., and S. Solomon, Ozone destruction through heterogeneous chemistry following the eruption of El Chichon, J. Geophys. Res., 94, 5029–5041, 1989.Google Scholar
  61. Hofmann, D. J., S.J. Oltmans, J.M. Harris, W.D. Komhyr, J.A. Lathrop, T. DeFoor, and D. Kuniyuki, Ozonesonde measurements at Hilo, Hawaii following the eruption of Pinatubo, Geophys. Res. Lett., 20, 1555–1558, 1993.Google Scholar
  62. Jäger, H. Uchino, O. Nagai, T. Fujimoto, T. Freudenthaler, and V. Homburg, F., Ground-based remote sensing of the decay of the Pinatubo eruption cloud at three Northern Hemisphere sites, Geophys. Res. Lett., 22, 607–610, 1995.Google Scholar
  63. Joos, F., and U. Baltensperger, A field study on chemistry, S(IV) oxidation rates and vertical transport during fog conditions. Atmos. Env., 25A, 217–230, 1991.Google Scholar
  64. Kellogg, W. W., Cadle, R. D., Allen, E. R., Lazrus, A. L., and E. A. Martell, The sulfur cycle. Science, 175, 587–596, 1972.Google Scholar
  65. Kent, G. S., and McCormick, M. P., SAGE and SAM-II measurements of global stratospheric aerosol optical depth and mass loading, J. Geophys. Res., 89, 5303–5314, 1984.Google Scholar
  66. Kinnison, D. E., K.E. Grant, P.S. Connell, D.A. Rotman, and D. J. Wuebbles, The chemical and radiative effects of the Mount Pinatubo eruption, J. Geophys. Res., 99, 25, 705–25, 731, 1994.Google Scholar
  67. Kjellström, E., A three-dimensional global model study of Carbonyl Sulfide in the troposphere and in the lower stratosphere, J. Atmos. Chem., 151–172, 29, 1998.Google Scholar
  68. Kodera K., M. Chiba, H. Koide, A. Kitoh, and Y. Nikaidou, Interannual variability of the winter stratosphere and troposphere in the Northern Hemisphere, Journal of the Meteorological Society of Japan, 74, 365–382, 1996.Google Scholar
  69. Krueger, A. J., L. S. Walter, P. K. Bhartia, C. C. Schnetzler, N. A. Krotkov, I. Sprod, and G. J. S. Bluth, Volcanic sulfur dioxide measurements from the Total Ozone Mapping Spectrometer (TOMS) instruments, J. Geophys. Res., 100, 14057–14076, 1995.Google Scholar
  70. Krueger, A. J., C. C. Schnetzler, and L. S. Walter, The December 1981 eruption of Nyamuragira Volcano (Zaire), and the origin of the “mystery cloud” of early 1982, J. Geophys. Res., 101, 15, 191–15, 196, 1996.Google Scholar
  71. Lamb, H. H., Volcanic dust in the atmosphere; with a chronology and assessment of its meteorological significance, Philosophical Transactions of the Royal Society of London Series A-Mathematical and Physical Sciences, 266, 425–533, 1970.Google Scholar
  72. Lamb, H. H., Supplementary volcanic dust veil index assessments, Climate Monitoring, 6, 57–67, 1977.Google Scholar
  73. Lamb, H. H., Update of the chronology of assessments of the volcanic dust veil index, Climate Monitoring, 12, 79–90, 1983.Google Scholar
  74. Lambert, G., M.-F. Le Cloarec, and M. Pennisi, Volcanic output of SO2 and trace metals: A new approach. Geochimica et Cosmochimica Acta, 52, 39–42, 1988.Google Scholar
  75. Langmann, B., and H.-F. Graf, The chemistry of the polluted atmosphere over Europe: Simulations and sensitivity studies with a regional chemistry-transport-model, Atmos. Env. 31,3239–3257, 1997.Google Scholar
  76. Le Guern, F., Les débits de CO2 et de SO2 volcaniques dans l’atmosphère. Bulletin of Volcanology, 45, 197–202, 1982.Google Scholar
  77. Mankin, W. G., and M. T. Coffey, Increased stratospheric hydrogen chloride in the El Chichön cloud, Science, 226, 170–172, 1984.Google Scholar
  78. Mankin, W. G., M. T. Coffey, and A. Goldman, Airborne observations of SO2, HCl, and O3 in the stratospheric plume of the Pinatubo volcano in July 1991, Geophys. Res. Lett., 19, 179–182, 1992.Google Scholar
  79. Mauldin, L. E., III, N. H. Zaun, M. P. McCormick, J. H. Guy, and W. R. Vaughn, Stratospheric Aerosol and Gas Experiment II Instrument: A Function Description, Optical Engeneering, 24, 307–312, 1985.Google Scholar
  80. McClelland L., T. Simkin, M. Summers, E. A. Nielsen, and T. C. Stein (eds). Global Volcanism 1975–1985: The First Decade of Reports from the Smithsonian Institution’s Scientific Event Alert Network (SEAN), Prentice Hall and American Geophysical Union, Englewood Cliffs, 657 pp., 1989.Google Scholar
  81. McCormick, M. P., P. Hamill, T. J. Pepin, W. P. Chu, T. J. Swissler, and L. R. Master, Satellite studies of the stratospheric aerosol, Bulletin of the American Meteorological Society, 60, 1038–1046, 1979.Google Scholar
  82. McCormick, M. P., SAGE II: An overview, Advances in Space Research, 7, 219–226, 1987.Google Scholar
  83. McCormick, M. P., L. W. Thomason, and C. R. Trepte, Atmospheric effects of the Mt Pinatubo eruption, Nature, 373, 399–404, 1995.Google Scholar
  84. McElroy, M. B., R. J. Salawitch, and K. Minschwaner, The changing stratosphere. Planetary and Space Science, 40, 373–401, 1992.Google Scholar
  85. McKeen, S. A., S. C. Liu, and C. S. Kiang, On the chemistry of stratospheric S02 from volcanic eruptions, J. Geophys. Res., 89, 4873–4881, 1984.Google Scholar
  86. Menzies, R. T., and D. M. Tratt, Evidence of Seasonally Dependent Strato sphere-troposphere Exchange and Purging of Lower Stratospheric Aerosol from a Multiyear Lidar Data Set, J. Geophys. Res., 100, 3139–3148, 1995.Google Scholar
  87. Michelangeli, D. V., M. Y. Allen, and L. Yuk, El Chichön volcanic aerosols: impact of radiative, thermal, and chemical perturbations, J. Geophys. Res., 94, 18429–18443, 1989.Google Scholar
  88. Naughton J. J., V. A. Greenberg, and R. Goguel, Incrustations and Fumarolic Condensates at Kilauea Volcano, Hawaii — Field, Drill-Hole And Laboratory Observations, Journal of Volcanology and Geothermal Research, 1, 149–165, 1976.Google Scholar
  89. Newhall, C., and S. Self, The Volcanic Explosivity Index (VEI): An estimate of explosive magnitude for historical volcanism, J. Geophys. Res., 87, 1281–1238, 1982.Google Scholar
  90. Nober F., H.-F. Graf, and D. Rosenfeld, Sensitivity of the global circulation to the suppression of precipitation by anthropogenic aerosols, in print Global Planet. Change, 2002.Google Scholar
  91. Oberhuber, J. M., M. Herzog, H.-F. Graf, and K. Schwanke, Volcanic plume simulation on large scales, Journal of Volcanology and Geothermal Research, 87, 29–53, 1998.Google Scholar
  92. Oppenheimer C., P. Francis, and J. Stix, Depletion rates of SO2 in tropospheric volcanic plumes, Geophys. Res. Lett., 25, 2671–2674, 1998.Google Scholar
  93. Oppenheimer, C., Limited global change due to the largest known Quaternary eruption, Toba 74 kyr BP?, Quaternary Science Reviews, 21, 1593–1609, 2002.Google Scholar
  94. Palais, J., Sigurdsson, H., Petrologic evidence of volatile emissions from major historic an pre-historic volcanic eruptions, In: Berger, A., Dickinson, R.E., Kidson, R.E., Understanding Climate Change, American Geophysical Union, Washington, DC, 31–53, 1989.Google Scholar
  95. Parker, D. E., and J. L. Brownscombe, Stratospheric warming following the El Chichón volcanic eruption Nature, 301, 406–408, 1983.Google Scholar
  96. Pinto, J. R., R. P. Turco, and O. B. Toon, Self-Limiting Physical and Chemical Effects in Volcanic Eruption Clouds, J. Geophys. Res., 94, 11165–11174, 1989.Google Scholar
  97. Pitari, G., and V. Rizzi, An Estimate of the Chemical and Radiative Perturbation of Stratospheric Ozone Following the Eruption of Mt. Pinatubo, J. Atmos. Sci., 50, 3260–3276, 1993.Google Scholar
  98. Prather, M., Catastrophic loss of stratospheric ozone in dense volcanic clouds, J. Geophys. Res., 97(D9), 10187–10191, 1992.Google Scholar
  99. Pyle, D. M., P. D. Beattie, and G. J. S. Bluth, Sulphur emissions to the stratosphere from explosive volcanic eruptions, Bulletin of Volcanology, 57, 663–671, 1996.Google Scholar
  100. Quiroz, R. S., Compact review of observational knowledge of blocking, with emphasis on the long-wave composition of blocks, In: Annual Climate Diagnostics Workshop, 7th, Boulder, CO., Oct. 18–22, 1982, Proceedings, Wash., D.C., U.S. National Oceanic and Atmospheric Administration, March, 1983, p. 104–107, Climate Analysis Ctr., NMC/NWS/NOAA, Wash., D.C.M.G.A, 35, 8–254, 1984.Google Scholar
  101. Randel, W. J, F. Wu, J. M. Russell III, J. W. Waters, and L. Froidevaux, Ozone and temperature changes in the stratosphere following the eruption of Mount Pinatubo, J. Geophys. Res., 100, 16753–16764, 1995.Google Scholar
  102. Rani, A., D. S. N. Prasad, P. V. S. Madnawat, and K. S. Gupta, The role of free fall atmospheric dust in catalysing autoxidation of aqueous sulphur dioxide, Atmos. Env., 26A, 67–673, 1992.Google Scholar
  103. Read, W. G., L. Froidevaux, and J. W. Waters, Microwave Limb Sounder measurement of stratospheric SO2 from the Mt. Pinatubo volcano, Geophys. Res. Lett., 20, 1299–1302, 1993.Google Scholar
  104. Robertson, A., J. Overpeck, D. Rind, E. Mosley-Thompson, G. Zielinski, J. Lean, D. Koch, J. Penner, I. Tegen, and R. Healy, Hypothesized climate forcing time series for the last 500 years, J. Geophys. Res., 106, 14783–14803, 2001.Google Scholar
  105. Robock, A., A latitudinally dependent volcanic dust veil index, and its effect on climate simulations, Journal of Volcanology and Geothermal Research, 11, 67–80, 1981a.Google Scholar
  106. Robock, A., The Mount St. Helens volcanic eruption of 18 May 1980: Minimal climatic effect, Science, 212, 1383–1384, 1981b.Google Scholar
  107. Robock, A., and J. Mao, Winter warming from large volcanic eruptions, Geophys. Res. Lett., 19, 2405–2408, 1992.Google Scholar
  108. Robock, A., and M. P. Free, Ice cores as an index of global volcanism from 1850 to the present, J. Geophys. Res., 100, 11, 549–11, 567, 1995.Google Scholar
  109. Robock, A., and M. P. Free, The volcanic record in ice cores for the past 2000 years, Climatic Variations and Forcing Mechanisms of the Last 2000 Years, edited by Philip D. Jones, Raymond S. Bradley, and Jean Jouzel, Springer-Verlag, Berlin, 533–546, 1996.Google Scholar
  110. Robock, A., Volcanic eruptions and climate, Reviews of Geophysics, 38, 191–219, 2000.Google Scholar
  111. Rose, W. I., and C. A. Chesner, Worldwide dispersal of ash and gases from the earth largest known eruption: Toba, Sumatra, 75 ka. Palaeogeography Palaeoclimatology Palaeoecology, 89, 269–275, 1990.Google Scholar
  112. Rose, W. I., D. J. Delene, D.J. Schneider, G. J. S. Bluth, A. J. Krueger, I. Sprod, C. McKee, H. Davies, and G.G.J. Ernst, Ice in the 1994 Rabaul Eruption Cloud: Implications for volcano hazard and atmospheric effects, Nature, 375, 477–479, 1995.Google Scholar
  113. Rose, W. I., G. J. S. Bluth, and G. G. J. Ernst, Integrating retrievals of volcanic cloud characteristics from satellite remote sensors — a summary, Philosophical Transactions of Royal Society, Series A, 358, 1585–1606, 2000.Google Scholar
  114. Rosen, J. M., N. Kjome, R. L. McKenzie, and J. B. Liley, Decay of Mount Pinatubo aerosol at mid-latitudes in northern and southern hemispheres, J. Geophys. Res., 99, 25733–25739, 1994.Google Scholar
  115. Rosenfeld, J. E., Considine, D. B., Meade, P. E., Bacmeister, J. T., Jackmon, C. H., and M. R. Schoeberl, Stratospheric effects of Mount Pinatubo aerosol studied with a coupled two-dimensional model, J. Geophys. Res., 102, 3649–3670, 1997.Google Scholar
  116. Russell, P. B., J. M. Livingston, R. F. Pueschel, J. B. Pollack, S. Brooks, P. Hamill, J. Hughes, L. Thomason, L. Stowe, T. Deshler, and E. Dutton, Global to microscale evolution of the Pinatubo volcanic aerosol, derived from diverse measurements and analyses, J. Geophys. Res., 101, 18745–18763, 1996.Google Scholar
  117. Sassen, K., Evidence for liquid-phase cirrus cloud formation from volcanic aerosol: Climate implications, Science, 257, 516–519, 1992.Google Scholar
  118. Sassen, K., D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, and J. Hallett, The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences on volcanic aerosols, J. Atmos. Sci., 52, 97–123 1995.Google Scholar
  119. Sato, M., J.E. Hansen, M. P. McCormick, and J. B. Pollack, Stratospheric aerosol optical depths 1850–1990, J. Geophys. Res., 98, 22, 987–22994, 1993.Google Scholar
  120. Scaillet, B., B. Clemente, B. W. Evans, and M. Pichavant, Redox controls of sulfur degassing in silicic magmas, J. Geophys. Res., 103, 23, 937–23, 949, 1998.Google Scholar
  121. Schimel, D., D. Alves, I. Enting, M. Heimann, F. Joos, D. Raynaud, T. Wigley, M. Prather, R. Derwent, D. Ehhalt, P. Fraser, E. Sauhueza, Zhou, X. P., Jonas, R. Charlson, H. Rodhe, S. Sadasivan, K. P. Shine, Y. Fouquart, V. Ramaswamy, S. Solomon, J. Srinivasan, D. Albritton, R. Derwent, I. Isaksen, M. Lal, and D. Wuebbles, Radiative forcing of climate change, In: Climate Change 1995: The Science of Climate Change, J. T. Houghton, L. G. M. Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell (eds), 65–131, Cambridge University Press, Cambridge, UK, 1996.Google Scholar
  122. Schmincke, H.-U.,Transfer von festen, flüssigen und gasförmigen Stoffen aus Vulkanen in die Atmosphäre, Zeitschrift für Umweltchemie und Ökotoxikologie, 5, 27–44, 1993.Google Scholar
  123. Schnetzler, C. C., G. J. S. Bluth, A. J. Krueger, and L. S. Walter, A proposed volcanic sulfur dioxide index (VSI), J. Geophys. Res., 102, 20087–20091, 1997.Google Scholar
  124. Seinfeld, J. H., and S. N. Pandis, Atmospheric Chemistry and Physics, From Air Pollution to Climate Change, John Wiley & Sons, New York, 1998.Google Scholar
  125. Sheridan, P. J., R. C. Schnell, D. J. Hofmann, and T. Deshler, Electron microscope studies of Mt. Pinatubo aerosol layers over Laramie, Wyoming, during summer 1991, Geophys. Res. Lett., 19, 203–206, 1992.Google Scholar
  126. Simkin T. L., Siebert, L. McClelland, D. Bridge, and C. Newhall, J. Latter, Volcanoes of the World: a regional directory, gazetteer, and chronology of volcanism during the last 10 00 years, Hutchinson Ross Pub Co, Stroudsburg, 1981.Google Scholar
  127. Simkin, T., Terrestrial volcanism in space and time, Annual Review of Earth and Planetary Sciences, 21, 427–452, 1993.Google Scholar
  128. Simkin T., and L. Siebert, Volcanoes of the World: a Regional Directory, Gazetteer, and Chronology of Volcanism During the Last 10,000 Years, (second edition), Geoscience Press, Tucson, 1994.Google Scholar
  129. Solomon, S., R. W. Portmann, R. R. Garcia, L. W. Thomason, L. R. Poole, and M. P. McCormick, The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes, J. Geophys. Res., 101, 6713–6727, 1996.Google Scholar
  130. Solomon, S., R. W. Portmann, R. R. Garcia, W. Randel, F. Wu, R. Nagatani, J. Gleason, L. Thomason, L. R. Poole, and M. P. McCormick, Ozone depletion at mid-latitudes: coupling of volcanic aerosols and temperature variability to anthropogenic chlorine, Geophys. Res. Lett., 25, 1871–1874, 1998.Google Scholar
  131. Song, N., D. O’C. Starr, D. J. Wuebbles, A. Williams, and S. M. Larson, Volcanic aerosols and interannual variation of high clouds, Geophys. Res. Lett., 23, 2657–2660, 1996.Google Scholar
  132. Stenchikov, G. L., I. Kirchner, A. Robock, H.-F. Graf, J. C. Antuna, R. G. Grainger, A. Lambert, and L. Thomason, Radiative forcing from the 1991 Mount Pinatubo volcanic eruption, J. Geophys. Res., 103, 13, 837–13, 857, 1998.Google Scholar
  133. Stevermer, A., I. Petropavlovskikh, J. Rosen, and J. DeLuisi, Development of global stratospheric aerosol climatology: Optical properties and applications for UV, J. Geophys. Res., 105, 22763–22776, 2000.Google Scholar
  134. Stoiber, R. E., and A. Jepsen, Sulfur dioxide contributions to the atmosphere by volcanoes, Science, 182, 577–578, 1973.Google Scholar
  135. Stoiber, R. E., S. N Williams, and B. Huebert, Annual contribution of sulfur dioxide to the atmosphere by volcanoes. Journal of Volcanology and Geothermal Research, 33, 1–8, 1987.Google Scholar
  136. Stothers, R. B., Major optical depth perturbations to the stratosphere from volcanic eruptions: Pyrheliometric period 1881–1960, J. Geophys. Res., 101, 3901–3920, 1996.Google Scholar
  137. Symonds, R. B., W. I. Rose, and M. H. Reed, Contribution of Cl- and F-bearing gases to the atmosphere by volcanoes, Nature, 334, 415–418, 1988.Google Scholar
  138. Symonds R. B., W. I. Rose, G. J. S. Bluth, and T. M. Gerlach, Volcanic gas studies: methods, results and applications, in: Volatiles in Magma, published by Mineral Society of America, M. R. Carrol and J. R. Holloway (eds), Reviews in Mineralogy, 30, 1–66, 1994.Google Scholar
  139. Tabazadeh, A., and R. P. Turco, Stratospheric chlorine injection by volcanic eruptions: HCl scavenging and implications for ozone, Science, 260, 1082–1086, 1993.Google Scholar
  140. Textor, C., Sachs, P.M., Graf, H.-F., and T. Hansteen, The 12,900 yr BP Laacher See eruption: estimation of volatile yields and simulation of their fate in the plume, In: Volcanic Degassing, Geological Society Special Publication 213, Clive Oppenheimer, David Pyle and Jenni Barclay (eds), 2003.Google Scholar
  141. Textor, C,, Graf, H.-F., Herzog, M., and J. M. Oberhuber, Injection of Gases into the Stratosphere by Explosive Volcanic Eruptions, J. Geophys. Res., in press, 2003.Google Scholar
  142. Thomason, L. W., A diagnostic aerosol size distribution inferred from SAGE II measurements, J. Geophys. Res., 96, 22501–22508, 1991.Google Scholar
  143. Thomason, L. W., L. R. Poole, and T. Deshler, A global climatology of stratospheric aerosol surface area density deduced from stratospheric aerosol and gas experiment II measurements: 1984–1994, J. Geophys. Res., 102, 8967–8976, 1997.Google Scholar
  144. Tie, X., G. P. Brasseur, B. Briegleb, and C. Granier, Two-dimensional simulation of Pinatubo aerosol and its effect on stratospheric ozone, J. Geophys. Res., 99, 20, 545–20, 562, 1994.Google Scholar
  145. Timmreck, C., and H.-F. Graf, A microphysical model to simulate the development of stratospheric aerosol in a GCM. Meteorologische Zeitschrift, 9, 263–282, 2000.Google Scholar
  146. Toohey, D. W., A critical review of stratospheric chemistry research in the U.S.: 1991–1994, U.S. National Report to the International Union of Geodesy and Geophysics 1991–1994, Reviews of Geophysics, 33, 759–773, 1995.Google Scholar
  147. Turco, R. P., Toon, O. B., Whitten, R. C., Hamill, P., and R. G. Keese, The 1980 eruption of Mount St. Helens: Physical and chemical processes in the stratospheric cloud, J. Geophys. Res., 88, 5299–5319, 1983.Google Scholar
  148. Twomey, S., Pollution and planetary albedo. Atmos. Env., 8, 1251–1265, 1974.Google Scholar
  149. Uchino, O., et al. Observation of the Pinatubo volcanic cloud by lidar network in Japan, Journal of the Meteorological Society of Japan, 71, 285–295, 1992.Google Scholar
  150. Varekamp, J.C., J.F. Luhr, and K.L. Prestegaard, The 1982 eruptions of El Chichön Volcano (Chiapas, México): Character of the eruptions, ash-fall deposits, and gasphase, and Geothermal Research, 23, 39–68, 1984.Google Scholar
  151. Veiga, R. E., SAGE II measurements of volcanic aerosols, Technical Digest Series, 5, Optical Society of America, Washington, D.C., 467–470, 1993.Google Scholar
  152. Wallace, L., and W. Livingston, The effect of the Pinatubo cloud on hydrogen chloride and hydrogen fluoride, Geophys. Res. Lett., 19, 1209, 1992.Google Scholar
  153. Weisenstein, D. K., G. K. Yue, M. K. W. Ko, N.-D. Sze, J. M. Rodriguez, and C. J. Scott, A two-dimensional model of sulfur species and aerosols, J. Geophys. Res., 102, 13019–13053, 1997.Google Scholar
  154. Westrich, H.R., and T.M. Gerlach, Magmatic gas source for the stratospheric S02 cloud from the June 15, 1991 eruption of Mount Pinatubo, Geology, 20, 867–870, 1992.Google Scholar
  155. Wilson, L., Explosive volcanic eruptions — III. Plinian eruption columns, Geophysical Journal of the Royal Astronomical Society, 45, 543–556, 1976.Google Scholar
  156. Woods, D. C., R. L. Chuan, and W. I. Rose, Halite particles injected into the stratosphere by the 1982 El Chichön eruption, Science, 230, 170–172, 1985.Google Scholar
  157. Woods, A. W., The fluid dynamics and thermodynamics of volcanic eruption columns, Bulletin of Volcanology, 50, 169–193, 1988.Google Scholar
  158. Woods, A. W., Moist convection and the injection of volcanic ash into the atmosphere, J. Geophys. Res., 98, 17627–17636, 1993.Google Scholar
  159. Zielinski, G. A., Stratospheric loading and optical depth estimates of explosive volcanism over the last 2100 years derived from the GISP2 Greenland ice core, J. Geophys. Res., 100, 20937–20955, 1995.Google Scholar
  160. Zielinski, G. A., P.A. Mayewski, L.D. Meeker, S. Whitlow, and M. Twickler, A 110,000 year record of explosive volcanism from the GISP2 (Greenland) ice core, Quaternary Research, 45, 109–118, 1996.Google Scholar
  161. Zielinski, G. A., Use of paleo-records in determining variability within the volcanism-climate system, Quaternary Science Reviews, 19, 417–438, 2000.Google Scholar
  162. Zhao, J., R. P. Turco, and O. B. Toon, A model simulation of Pinatubo volcanic aerosols in the stratosphere, J. Geophys. Res., 100, 7315–7328, 1995.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Christiane Textor
  • Hans-F. Graf
  • Claudia Timmreck
  • Alan Robock

There are no affiliations available

Personalised recommendations