Skip to main content

Global Emissions of Mineral Aerosol: Formulation and Validation using Satellite Imagery

  • Conference paper
Emissions of Atmospheric Trace Compounds

Part of the book series: Advances in Global Change Research ((AGLO,volume 18))

Abstract

The most abundant aerosol components present in the atmosphere are dust and sea salt (Andreae, 1995). Li et al. (1996) show that dust dominates the aerosol light-scattering over the tropical and sub-tropical Atlantic. Satellite retrievals also illustrate the importance of dust over large regions from arid deserts to remote oceanic regions downwind of West Africa, Asia and the Persian Gulf (Husar et al., 1997; Deuzé et al., 2000; Tanré et al., 2001). Furthermore, land modification, agricultural practices and the migration of desert fringes appear to have contributed to the increase in the dust transport over the Atlantic from the 1960s to the 1980s. These perturbations to the dust cycle brought by human activity are thought to account for 15 to 50% of the atmospheric dust load (Tegen and Fung, 1995; Tegen, personnal communication, 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreae, M. O., “Climatic effects of changing atmospheric aerosol levels,” in World Survey of Climatology, 16, Future climates of the world, A. Henderson-Sellers, Ed., Elsevier, Amsterdam, 347–398, 1995.

    Google Scholar 

  • Bagnold, R.A., The Physics of Blown Sand and Desert Dunes, Mehuen, London, 265 pp., 1941.

    Google Scholar 

  • Chepil, W.S., Properties of soil which influrence wind erosion, 4: State of dry aggregate structure, Soil Sci., 72, 387–401, 1951.

    Article  Google Scholar 

  • Chiapello I. and C. Moulin, TOMS and METEOSAT satellite records of the variability of Saharan dust transport over the Atlantic during the last two decades (1979–1997), Geophys. Res. Lett., 29, 17–20, 2002.

    Article  Google Scholar 

  • Dentener, F. J., G. R. Carmichael, Y. Zhang, J. Lelieveld, and P. Crutzen, Role of mineral aerosol as a reactive surface in the global troposphere, J. Geophys. Res., 101, 22, 869–22, 889, 1996.

    Google Scholar 

  • DeuzĂ© J.L., P. Goloub, M. Herman, A. Marchand, G. Perry, S. Susana, and D. TanrĂ©, Estimate of the aerosol properties over the oceans with POLDER, J. Geophys. Res., 105, 15329–15346, 2000.

    Article  Google Scholar 

  • Falkowski, P. G., R. T. Barber, and V. Smetacek, Biogeochemical controls and feedbacks on Ocean primary production, Science, 281, 200–206, 1998.

    Article  Google Scholar 

  • FĂ©can F., B. Marticorena and G. Bergametti, Parametrization of the increase in aeolian erosion threshold wind velocity due to soil moisture for arid and semi-arid areas, Ann. Geophysicae, 19, 149–157, 1999.

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO-UNESCO), Digital Soil Map of the World and Derived Properties. Rome, Italy, 1995.

    Google Scholar 

  • Genthon, C., Simulations of the long range transport of desert dust and sea-salt in a general circulation model, in Precipitation, Scavenging and Atmospheric Surface Exchange, ed. S. E. Schwartz and W. G. N. Slinn, pp. 1783–1794, Taylor and Francis, Philadelphia, PA, 1992a.

    Google Scholar 

  • Genthon, C. Simulations of desert dust and sea-salt aerosols in Antarctica with a general circulation model of the atmosphere, Tellus, Ser. B, 44, 371–389, 1992b.

    Article  Google Scholar 

  • Gillette, D. A., On the production of wind erosion aerosol having potential for long range transport, J. Rech. Atmos., 8, 734–744, 1974.

    Google Scholar 

  • Gillette, D. A., A wind-tunnel simulation of the erosion of soil: Effect of soil texture, sandblasting, wind speed, and soil consolidation on dust production, Atm. Environ., 12, 1735–1743, 1978.

    Article  Google Scholar 

  • Gillette, D. A., A qualitative geophysical explantion for “hot-spot” dust emitting source regions, Contr. Atmos. Phys., 72, 67–77, 1999.

    Google Scholar 

  • Ginoux, P., M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik, and S-J Lin, Sources and distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res., 106, 20, 255–20, 273, 2001.

    Google Scholar 

  • Greeley R. and J.D. Iversen, Wind as a Geological Process on Earth, Venus, Mars, and Titan, Cambridge University Press, Cambridge, 333 pp., 1985.

    Book  Google Scholar 

  • Griffin, D. W., V. H. Garrison, J. R. Herman, and E. A. Shinn, African desert dust in the Caribebbean atmosphere: Microbiology and public health, Aerobiologia, 17, 203–213, 2001.

    Article  Google Scholar 

  • Guelle, W., Y. Balkanski, M. Schulz, B. Marticorena, G. Bergametti, C. Moulin, R. Arimoto, and K. D. Perry, Modelling the atmospheric distribution of mineral aerosol: Comparison with ground measurements and satellite observations for yearly and synoptic time scales over the North Atlantic, J. Geophys. Res, 105, 1997–2005, 2000.

    Article  Google Scholar 

  • Harrison, S. P., K. E. Kohfeld, C. Roelandt, and T. Claquin, The role of dust in climate changes today, at the last glacial maximum an in the future, Earth Sci. Rev., 54, 43–80, 2001.

    Article  Google Scholar 

  • Haywood, J., and O. Boucher, Estimates of the direct and indirect radiative forcing dir to tropospheric aerosols, Rev. Geophys., 38, 513–543, 2000.

    Article  Google Scholar 

  • Heimann, M., The global atmospheric model TM2 (model description and user manual), Technical report, Deutsches Klimarechenzentrum, Hamburg, Technical Report No 10, 47 pp., 1995.

    Google Scholar 

  • Herman, J. R., P. K. Bhartia, O. Torres, C. Hsu, C. Seftor, and E. Celarier, Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data, J. Geophys. Res., 102, 16, 911–16, 922, 1997.

    Google Scholar 

  • Hsu, N. C., J. R. Hermann, O. Torres, B. N. Holben, D. Tanre, T. F. Eck, A. Smirnov, B. Chatenet, and F. Lavenu, Comparisons of the TOMS aerosol index with Sun-photometer aerosol optical depth: Results and applictations, J. Geophys. Res., 104, 6269–6279, 1999.

    Article  Google Scholar 

  • Husar, R. B., J. M. Prospero, and L. L. Stowe, Characterization of tropospheric aerosols over the oceans with the NOAA Advanced Very High Resolution Radiometer optical thickness operational product, J. Geophys. Res., 102, 16, 889–16, 909, 1997.

    Google Scholar 

  • Iversen, J.D. and J.R. White, Saltation threshold on Earth, Mars and Venus, Sedimentology, 29, 111–119, 1982.

    Article  Google Scholar 

  • Joussaume, S., Three dimensional simulations of the atmospheric cycle of desert dust particles using a general circulation model, J. Geophys. Res., 95, 1909–1941, 1990.

    Article  Google Scholar 

  • Legrand M., A. Plana-Fattori, C. N’doumĂ©, Satellite detection of dust using the IR imagery of Meteosat, 1. Infrared difference dust index, J. Geophys. Res., 106, 18251–18273, 2001.

    Article  Google Scholar 

  • Levin, Z., E. Ganor, and V. Gladstein, The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean, J. Appl. Metorol., 35, 1511–1523, 1996.

    Article  Google Scholar 

  • Li X., H.B. Maring, D. Savoie, K. Voss and J.M. Prospero, Dominance of mineral dust in aerosol light scattering in the North Atlantic trade winds, Nature, 380, 416–419, 1996.

    Article  Google Scholar 

  • Mahowald, N., K. Kohfeld, M. Hansson, Y. Balkanski, S. P. Harrison, I. C. Prentice, M. Schulz, and H. Rodhe, Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments, J. Geophys. Res., 104, 15, 895–15, 916, 1999.

    Google Scholar 

  • Marticorena, B. and G. Bergametti, Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme, J. Geophys. Res., 100, 16415–16430, 1995.

    Article  Google Scholar 

  • Marticorena, B., Modeling the production of desert dust in arid and semi-arid regions: development and validation of a computational code for large-scale transport (in French), Ph.D thesis Paris University, 1995.

    Google Scholar 

  • Marticorena, B., G. Bergametti, D. A. Gillette, and J. Belnap, Factors controlling threshold friction velocity in semi-arid and arid areas of the United States, J. Geophys. Res., 102, 23, 277–23, 287, 1997.

    Google Scholar 

  • Marticorena, B., G. Bergametti, and M. Legrand, Comparison of emission models used for large scale simulation of the mineral dust cycle, Contr. Atmos. Phys., 72, 151–160, 1999.

    Google Scholar 

  • Martin, J.H. and R.M. Gordon, Northeast Pacific iron distributions in relation to phytoplankton productivity, Deep-Sea Res., 35, 177–196, 1988.

    Article  Google Scholar 

  • Mbourou, G.N., J.J. Bertrand and S.E. Nicholson, The diurnal and seasonal cycles of wind-borne dust over Africa north of the Equator. J. Appl. Meteor. 36: 265–273, 1997.

    Article  Google Scholar 

  • Nickovic, S., and Dobricic, S., A model for long-range transport of desert dust, Mon. Wea. Rev., 124, 2537–2544, 1996.

    Article  Google Scholar 

  • Patial R., Mountain desert silicosis, J. Assoc. Phyis. India, 47, 503–504, 1999.

    Google Scholar 

  • Prospero, J. M., P. Ginoux, O. Torres, S. Nicholson, and T. Gill, Environmental characterization of global sources of amospheric soil dust identified with the NIMBUS-7 TOMS Absorbing Aerosol Product, Rev. Geophys., 40, 1–31 2002.

    Article  Google Scholar 

  • Pye, K., Aeolian Dust and Dust Deposits, Academic Press, San Diego, California, 1987.

    Google Scholar 

  • Raupach, M.R., Drag and drag partition on rough surfaces, Bondary Layer Meteorology, 60, 375–395, 1992.

    Article  Google Scholar 

  • Raupach, M.R., D.A. Gillette and J.F. Leys, The effect of roughness elements on wind erosion threshold, J. Geophys. Res., 98, 3023–3029, 1993.

    Article  Google Scholar 

  • Raupach, M.R., Simplified expression for vegetation roughness length and zero-plane displacement as function of canopy height and area index, Bondary Layer Meteorol., 71, 211–216, 1994.

    Article  Google Scholar 

  • Reheis, M. C. Dust deposition downwind of Owens (dry) Lake, 1991–1994: Preliminary findings, J. Geophys. Res., 102, 25999 – 26008, 1997.

    Article  Google Scholar 

  • Rosenfeld, D., Suppression of rain and snow by urban and industrial air pollution, Science, 287, 1793–1796, 2000.

    Article  Google Scholar 

  • Shao Y., M.R. Raupach, and P.A. Findlater, Effect of saltation bombardment on the entrainment of dust by wind, J. Geophys. Res., 12719–21726, 1993.

    Google Scholar 

  • Shao Y., M.R. Raupach, and J.F. Leys, A model for predicting eolian sand drift and dust entrainment on scales from paddock to region, Aust. J. Soi. Res., 34, 309–342, 1996.

    Article  Google Scholar 

  • Shao Y. and L. Leslie, Wind erosion prediction over the Australian continent, J. Geophys. Res., 102, 30091–30105, 1997.

    Article  Google Scholar 

  • Song C. H., and G.R. Carmichael, A three-dimensional modeling investigation of the evolution processes of dust and sea-salt particles in east Asia, J. Geophys. Res., 106, 18, 131–18, 154 2001.

    Google Scholar 

  • TanrĂ© D., F.M. BrĂ©on, J.L. DeuzĂ©, M. Herman, P. Goloub, F. Nadal, and A. Marchand, Global observation of anthropogenic aerosols from satellite, Geophys. Res. Lett., 28, 4555–4558,2001.

    Article  Google Scholar 

  • Tegen, I., and I. Fung, Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness, J. Geophys. Res., 99, 22, 8970–22, 914, 1994.

    Google Scholar 

  • Tegen, I., and I. Fung, Contribution to the atmospheric mineral aerosol load from land surface modification, J. Geophys. Res., 100, 18, 707–18, 726, 1995.

    Google Scholar 

  • Tegen, I., and A. A. Lacis, Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol, J. Geophys. Res., 101, 19, 237–19244, 1996.

    Google Scholar 

  • Tegen, I., A.A. Lacis and I. Fung, The influence on climate forcing of mineral aerosols from disturbed soils, Nature, 380, 419–422, 1996.

    Article  Google Scholar 

  • Tegen, I., P. Hollrig, M. Chin, I. Fung, D. Jacob, and J. Penner, Contribution of different aerosol species to the global aerosol extinction optical thickness; estimates from model results, J. Geophys. Res., 102, 23, 895–23, 916, 1997.

    Google Scholar 

  • Tegen, I., S.P. Harrison, K. Kohfeld, C. Prentice, M. Heimann, The impact of vegetation and preferential source areas on global dust aerosols: Results from a model study, J. Geophys. Res, in press, 2003.

    Google Scholar 

  • Torres, O., P. K. Bhartia, J.R. Herman, Z. Ahmad, and J. Gleason, Derivation of aerosol properties from a backscattered measurement of ultraviolet radiation: Theoretical basis, J. Geophys. Res, 108, 17, 099–17, 110, 1998.

    Google Scholar 

  • Torres, O., P.K. Bhartia, J.R. Herman, A. Sinyuk, P. Ginoux, B. Holben, A Long-Term Record of Aerosol Optical Depth from TOMS observations and comparison to AERONET measurements, J. Atmos. Sci., 59, 398–413, 2002.

    Article  Google Scholar 

  • Woodward, S., Modeling the atmospheric life cycle and radiative impact of mineral dust in the Hadley Centre climate model, J. Geophys. Res., 106, pp. 18, 155–18166, 2001.

    Article  Google Scholar 

  • Zobler, L., A world file for global climate modelling. Technical Support, NASA-TM-87802, 1986.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Balkanski, Y., Schulz, M., Claquin, T., Moulin, C., Ginoux, P. (2004). Global Emissions of Mineral Aerosol: Formulation and Validation using Satellite Imagery. In: Granier, C., Artaxo, P., Reeves, C.E. (eds) Emissions of Atmospheric Trace Compounds. Advances in Global Change Research, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2167-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2167-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6605-3

  • Online ISBN: 978-1-4020-2167-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics