Advertisement

Chaotic motion and the classical-quantum border

  • A. M. Kowalski
  • A. N. Proto
Conference paper
Part of the Nonlinear Phenomena and Complex Systems book series (NOPH, volume 8)

Abstract

Based on a two quantum dynaminal invariants of motion, I, related with the Uncertaity Principle and E r , adimensional and associated to the energy of the system, we study the classical-quantum transit of a semiclassical hamiltonian whose purely classical counterpart exhibits chaotic motion. The transit (no assumption concerning sizes or masses are done) between quantum nonchaotic to the classical chaotic regime is shown. Particularly, through E r we define the threshold above which quantum chaos appears, and the interval during which both regimes co-exist.

Keywords

Semiquantum Chaos Uncertainty Principle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Y. Alhassid and R. D. Levine, J. Chem. Phys. 67 (1977) 4321.ADSCrossRefGoogle Scholar
  2. [2]
    Y. Alhassid and R. D. Levine, Phys. Rev. A 18 (1978) 89.MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    A. Plastino, A. N. Proto, and C. Sarris, Physica A 241 (1997) 649ADSCrossRefGoogle Scholar
  4. [3a]
    A. M. Kowalski, A. Plastino and A. N. Proto, Phys. Lett. A 187 (1994) 220ADSCrossRefGoogle Scholar
  5. [3b]
    E. Duering, D. Otero, A. Plastino, and A.N. Proto. Phys. Rev. A35 (1987) 2314MathSciNetADSCrossRefGoogle Scholar
  6. [4]
    D. Otero, A. Plastino, A.N. Proto and G. Zannoli. Phys. Rev. A26 (1982).1209ADSCrossRefGoogle Scholar
  7. [5]
    A. M. Kowalski, A. Plastino, and A. N. Proto, Phys. Rev. E 52 (1995) 165.ADSCrossRefGoogle Scholar
  8. [6]
    A. M. Kowalski, A. Plastino, and A. N. Proto, Physica A, 236 (1997) 429.ADSCrossRefGoogle Scholar
  9. [7]
    A. M. Kowalski, M. T. Martin, J. Nuñez, A. Plastino, and A. N. Proto, Phys. Rev. A 58 (1998) 2596.ADSCrossRefGoogle Scholar
  10. [8]
    F. Cooper, J. F. Dawson, D. Meredith and H. Shepard, Phys. Rev. Lett. 72 (1994) 1337.ADSCrossRefGoogle Scholar
  11. [9]
    J. Aliaga and A.N. Proto. Phys. Lett. A142 (1989) 63CrossRefGoogle Scholar
  12. [9a]
    A Crespo, and A.N. Proto. Phys. Rev. A42 (1990)4325MathSciNetCrossRefGoogle Scholar
  13. [10]
    J. Aliaga, D. Otero, A. Plastino, and A.N. Proto. Phys. Rev. A37 (1988) 918MathSciNetCrossRefGoogle Scholar
  14. [11]
    A. Messiah, Quantum mechanics (North Holland, Amsterdam, 1961), Vol. I, Chap. 6.Google Scholar
  15. [12]
    E. Merzbacher, Quantum mechanics (Wiley, New York, 1963).Google Scholar
  16. [13]
    Gruver, J.L., Plastino, A. and Proto, A.N., Phys. Lett. A, 246 (1–2) (1998) pp. 61–65, and references thereinMathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • A. M. Kowalski
    • 1
  • A. N. Proto
    • 1
  1. 1.Dpto. de Computación, Facultad de Ingeniería, Buenos Aires Scientific Research Commission (CIC)Universidad de BuenosArgentina

Personalised recommendations