Skip to main content

Experimental Basis of Cosmic Ray Research

  • Chapter

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 303))

Abstract

Using the theory of CR meteorological effects (see Part 2, Chapters 5–9), all CR data obtained by continuous registration in the atmosphere and underground on the worldwide network of CR Observatories can be corrected and then transformed to the boundary of atmosphere by applying coupling functions and spectrographic methods (as described above, in Chapter 3). The same methods can also be utilized to find the rigidity spectrum of primary CR variations and determine the time variation of cut off rigidities. Furthermore, use of the information on CR asymptotic directions allows the computation of the CR distribution function out of the atmosphere, and in the interplanetary space (using the global-spectrographic method, also based on coupling functions method, see Section 3.14). By this recalculation we mathematically transform the worldwide network of CR Observatories in the atmosphere and underground into a unique giant multidirectional detector in space, which moves and rotates with Earth for continuous determination of CR space-rigidity distribution function in the interval from about one GV up to about thousand GV. To prolong this spectrum into smaller and higher energy range are widely used measurements on balloons and satellites, deep underground and by EAS installations. These data give information not only on the CR spectrum but also on CR chemical and isotopic contents, on CR intensity space-time variations, they are widely used for geophysical, astrophysical, and space research applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrosimov A.T. “Producing of great plastic scintillators on the basis of polystirol”, Cosmic Rays (NAUKA, Moscow), No. 5, 171–177 (1963).

    Google Scholar 

  • Abrosimov A.T., Ya.L. Blokh, and A.A. Pomanskij “Liquid scintillation detectors of great dimensions”, Cosmic Rays (NAUKA, Moscow), No 7, 260–279 (1965).

    Google Scholar 

  • Achenbach C.P. and J.H. Cobb “A new airborne detector for atmospheric muons”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 3, 1313–1316 (2001).

    ADS  Google Scholar 

  • Aita Y., T. Aoki, Y. Arai et al. “The ASHRA Detector”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 2, 1061–1064 (2003).

    ADS  Google Scholar 

  • Alania M.V., T.S. Bakradze, D.P. Bochikashvili et al. “The Tbilisi experimental cosmic ray array and the online system for automation of the collection and processing of observation data”, Proc. 15th Intern. Cosmic Ray Conf., Plovdiv, 9, 228–231 (1977).

    Google Scholar 

  • Alent’ev A.N., Ya.L. Blokh, L.I. Dorman, and A.A. Chaikin “Calculation and experimental determination of parameters of a big scintillation counters”, In Cosmic Ray Variations and Space Research, Moscow, NAUKA, 274–280 (1986).

    Google Scholar 

  • Alent’ev A.N., A.A. Chaikin, Ya.L. Blokh, and L.I. Dorman “Theoretical and experimental study of a large temporal scintillation counter of ionizing radiation”, Proc. 18th Intern. Cosmic Ray Conf., Bangalore, 9, 433–436 (1983).

    Google Scholar 

  • Ambriola M.L., G. Barbiellini, S. Bartalucci, et al. “CAPRICE98: a balloon borne magnetic spectrometer to study cosmic ray at different atmospheric depths”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake Sity, 5, 17–20 (1999).

    Google Scholar 

  • Ambriola M., R. Bellotti, F. Cafagna et al. “PAMELA space mission: The transition radiation detector”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 4, 2121–2124 (2003).

    Google Scholar 

  • Amenomori M., S. Ayabe, S.W. Cui, et al. “Performance of the Tibet — III Air-Shower Array”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 2, 573–576 (2001).

    ADS  Google Scholar 

  • Aoki T., Y. Arai, K. Arisaka, et al. “The Telescope Array Project”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 2, 915–918 (2001).

    ADS  Google Scholar 

  • Asatrian G.A., V.Kh. Babayan, A.R. Arseniev, and Yu.I. Stozhkov “The radiosonde for the neutron component of cosmic rays measurements in the atmosphere”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 1304–1307 (1995).

    Google Scholar 

  • Ashton F., R.B. Coats, and D.A. Simpson “Liquid scintillation counters”, Proc. 9th Intern. Cosmic Ray Conf., London, 2, 1079–1081 (1965).

    ADS  Google Scholar 

  • Bachelet F., P. Balata, E. Dyring, and N. Iucci “On the multiplicity effect in a standard cosmic-ray neutron monitor”, Nuovo Cimento, Ser. X, 31, 1126–1130 (1964).

    Article  Google Scholar 

  • Bachelet F., N. Iucci, and G. Villoresi “The Cosmic Ray Spectral Modulation above 2 GV during the Descending Phase of Solar Cycle Number 19. I: A Comprehensive Treatment of the Neutron Monitor Data from the Worldwide Station Network and Latitude Surveys”, Nuovo Cimentob, 7, 17–33 (1972).

    ADS  Google Scholar 

  • Badhwar G.D. “The radiation environment in low-Earth orbit”, Radiation Research, 148, No. 5, S3–S10 (1997).

    Article  Google Scholar 

  • Bakatanov V.N., Ya.L. Blokh, L.I. Dorman et al. “Scintillation supertelescope”, Cosmic Rays (Moscow, NAUKA), 15, 137–140 (1975).

    Google Scholar 

  • Baradzei L.T., Yu.I. Logachev, and P.P. Shishkov “Investigations of cosmic ray variations on altitudes 9–12 km”, Cosmic Rays (NAUKA, Moscow), No 3. 137–142 (1961).

    Google Scholar 

  • Bartely W.C, K.G. McCracken, and U.R. Rao “Pioneer VI detector to measure degree of anisotropy of cosmic radiation in energy range 7.5–90 MeV/nucleon”, Rev. Scient. Instrum. 38, No 2. 266–272 (1967)

    Article  ADS  Google Scholar 

  • Barton C. and A. Crispin “The development of scintillation counters based on medicinal paraffin”, Proc. Intern. Cosmic Ray Conf., London, 2, 1097–1098 (1965).

    ADS  Google Scholar 

  • Bashindzhagyan G., J. Adams, P. Bashindzhagyan, et al. “Polar balloon experiment for astrophysics research (Polar BEAR)”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 6, 2147–2150 (2001).

    ADS  Google Scholar 

  • Bauleo P., C. Bonifazi, A. Filevich, and A. Reguera “TANGO Array I: An air shower experiment in Buenos Aires”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 2, 577–580 (2001).

    ADS  Google Scholar 

  • Bazilevskaya G.A. and A. K. Svirzhevskaya “On the stratospheric measurements of cosmic rays”, Space Sci. Rev., 85, 431–521 (1998).

    Article  ADS  Google Scholar 

  • Beatty J.J., S. Beach, S. Coutu, et al. “Cosmic Ray Energetics And Mass (CREAM): A Detector for Cosmic Ray near the Knee”, Proc. 26th Intern. Cosmic Ray Conf. Salt Lake City, 5, 61–64 (1999).

    Google Scholar 

  • Belomestnikh V.A. and Yu.G. Shafer “Cosmic ray intensity variations in the stratosphere and methods of their registrations and investigations”, Proc. of YaFAN (Ac. of Sci. USSR Press, Moscow), Ser. Phys., No. 2, 47–56 (1958).

    Google Scholar 

  • Belov A. and E. Eroshenko “Cosmic Ray Observations for Space Weather”, The Proceedings for the 22-nd ISTC Japan Workshop on Space Weather Forecast, Japan, 2002, Vol. 1, 74–94 (2002).

    Google Scholar 

  • Belov A.V., E.A. Eroshenko, V.G. Yanke, K.F. Yudakhin, and G. Villoresi “Isotropic and anisotropic cosmic ray variations in March-June 1991”, Adv. Space Res., 16, 249–254 (1995).

    Article  ADS  Google Scholar 

  • Belov A.V. and K.F. Yudakhin “The cosmic ray data database”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 1324–1325 (1995).

    Google Scholar 

  • Bercovitch M. “A simple semi-cubical plastic-scintillator meson mega-telescope”, Deep River Laboratory, Canada, Preprint (1962).

    Google Scholar 

  • Bertou X. (for the Pierre Auger Collaboration) “Calibration and Monitoring of the Pierre Auger Surface Detectors”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 2, 813–816 (2003)

    ADS  Google Scholar 

  • Bieber J.W. and P. Evenson “Spaceship Earth — an Optimized Network of Neutron Monitors”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 1078–1081 (1995).

    Google Scholar 

  • Bieber J.W., P.E. Evenson, J.E. Humble, and M.L. Duldig “Cosmic Ray Spectra Deduced from Neutron Monitor Surveys”, Proc. 25th Intern. Cosmic Ray Conf., Durban, 2, 45–48 (1997).

    Google Scholar 

  • Binns W.R., J.H. Adams, L.M. Barbier et al. “ The Heavy Nuclei eXplorer (HNX) Mission”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 6, 2181–2184 (2001).

    ADS  Google Scholar 

  • Blau B., S.M. Harrison, H. Hofer et al. “The Superconducting Magnet System of the Alpha Magnetic Spectrometer AMS-02”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 4, 2153–2156 (2003).

    ADS  Google Scholar 

  • Blokh Ya.L., L.I. Dorman, N.S. Kaminer, and I.N. Kapustin “Cosmic ray neutron spectrograph on the basis of registration channels with different dead times using”, Geomagnetism and Aeronomy, 11, No. 5, 891–892 (1971).

    Google Scholar 

  • Blokh Ya.L., L.I. Dorman, V.K. Koiava et al. “Great neutron counters for super-monitors”, Cosmic Rays (Moscow, NAUKA), 13, 181–182 (1972).

    Google Scholar 

  • Blokh Ya.L., L.I. Dorman, and I.Ya. Libin “Zenith angle directive diagrams for scintillation telescopes of various geometry”, Cosmic Rays (Moscow, NAUKA), 14, 141–156 (1974).

    Google Scholar 

  • Blokh Ya.L., L.I. Dorman, and I.Ya. Libin “Choosing of optimally dimensions of scintillation supertelescope”, Cosmic Rays (Moscow, NAUKA), 15, 123–125 (1975a).

    Google Scholar 

  • Blokh Ya.L., L.I. Dorman, and I.Ya. Libin “Azimuth and zenith angle direction diagrams for scintillation telescopes of arbitrary geometry”, Cosmic Rays (Moscow, NAUKA), 15, 141–149 (1975b).

    ADS  Google Scholar 

  • Blokh Ya.L., L.I. Dorman, and I.Ya. Libin, and E.T. Franzus “Some problems of determination apparatus origin “variations” for muon telescopes”, Cosmic Rays (Moscow, NAUKA), 14, 93–112 (1974).

    ADS  Google Scholar 

  • Blokh Ya.L., L.I. Dorman, and I.Ya. Libin et al. “Investigation of cosmic ray intensity variations by underground telescope on great plastic scintillators”, Cosmic Rays (Moscow, NAUKA), 17, 76–79 (1976).

    Google Scholar 

  • Blokh Ya.L., L.I. Dorman, and I.Ya. Libin et al. “Taking into account accident coincidences for scintillation supertelescope”, Cosmic Rays (Moscow, NAUKA), 17, 45–50 (1976).

    Google Scholar 

  • Blokh Ya.L., L.I. Dorman, and F.A. Starkov “Some problems of neutron supermonitor methodical research”, Cosmic Rays (Moscow, NAUKA), 21, 85–93 (1980).

    Google Scholar 

  • Blokh Ya.L., I.Ya. Libin, L.I. Dorman et al. “The device for controlling the amplifiers-discriminators”, Proc. 15th Intern. Cosmic Ray Conf., Plovdiv, 9, 118–120 (1977).

    Google Scholar 

  • Bollinger L.M., G.E. Thomas, and R.J. Ginther “Neutron detection with glass scintillators”, Nucl. Lnstrum. and Methods 17, No 1, 97–116 (1962).

    Article  ADS  Google Scholar 

  • Borog V.V., A.Yu. Burinsky, A.V. Gvozdev et al. “Large aperture muon hodoscope for studies in solarterrestrial physics”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 1291–1294 (1995).

    Google Scholar 

  • Borog V.V., A.Yu. Burinsky, V.V. Dronov, and A.V. Gvozdev “Angular and temporary cosmic ray muon flux characteristics measured with large aperture scintillator hodoscope”, Proc. 25th Intern. Cosmic Ray Conf., Durban, 2, 449–452 (1997).

    Google Scholar 

  • Bortnik S.G. and L.V. Granitskij “Expeditionar monitor for registration of cosmic ray neutron component”, Results of Observations and Investigations in the Period of IQSY, NAUKA, Moscow, No. 4, 13–16 (1967a).

    Google Scholar 

  • Bortnik S.G. and L.V. Granitskij “A simple formatter-amplifier for mechanical counter MES-54”, Results of Observations and Investigations in the Period ofIQSY, NAUKA, Moscow, No. 4, 26–28 (1967b).

    Google Scholar 

  • Bortnik S.G., L.V. Granitskij, and V.N. Medvedev “Decoded instrument for data transforming in the form available for calculator mashine”, Results of Observations and Investigations in the Period of IQSY, NAUKA, Moscow, No 5 (1968)

    Google Scholar 

  • Bortnik S.G., L.V. Granitskij, A.F. Neermolov, and V.E. Nosov “Diskriminator of neutron monitor on tunnel diods”, Results of Observations and Investigations in the Period of IQSY, NAUKA, Moscow, No 3 (1967).

    Google Scholar 

  • Budnev N., D. Chernov, V. Galkin, et al. “Tunka EAS Cherenkov Array — status 2001”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 2, 581–584 (2001).

    Google Scholar 

  • Buénerd M. “The AMS-02 RICH Imager Prototype In-Beam Tests with 20 GeV/c per Nucleon Ions”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 4, 2157–2160 (2003).

    Google Scholar 

  • Burger J. and S. Gentile “The AMS-02 TRD for the International Space Station”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 4, 2161–2164 (2003).

    ADS  Google Scholar 

  • Bütikofer R., E.O. Flückiger, L. Desorgher, M.R. Moser, Y. Muraki, Y. Matsubara, T. Sako, H. Tsuchiya, and T. Sakai “SONTEl-Measurements at Gornergrat and Environmental Radioactivity”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 7, 4189–4192 (2003).

    Google Scholar 

  • Capell M. and E. Cortina “AMS-02 Electronics”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 4, 2173–2176 (2003).

    ADS  Google Scholar 

  • Carrel O. and M. Martin “Observation of time correlations in cosmic-rays”, Phys. Lett., B325, No. 3–4, 526–530 (1994).

    ADS  Google Scholar 

  • Casadei D. “The AMS-02 Time of Flight System. Final Design”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 4, 2169–2172 (2003).

    ADS  Google Scholar 

  • Casaus J. “Cosmic-ray Astrophysics with AMS-02”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 4, 2149–2152 (2003).

    ADS  Google Scholar 

  • Casolino M., V. Bidoli, A. Canestro et al. “Launch in orbit of NINA detector for cosmic ray nuclei study”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake Sity, 5, 108–111 (1999).

    Google Scholar 

  • Casolino M. and V. Mikhailov “Solar Particle Events Observation Capabilities of PAMELA Experiment”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 6, 3477–3480 (2003).

    ADS  Google Scholar 

  • Catalano O., A. Petrolini, A. Santangelo, and L. Scarsi “The EUSO Instrument onboard the International Space Station”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 2, 1081–1084 (2003).

    ADS  Google Scholar 

  • Charakhchyan A.N. “Radiozond for measurements of cosmic radiation intensity in the stratosphere”, Cosmic Rays (Nauka, Moscow), No. 3, 134–136 (1961).

    Google Scholar 

  • Chasson R.L., M. Iona, V.Y. Kisselbach, and P. Baker “Results from the new Denver multidirectional meson telescope”, Proc. 9th Intern. Cosmic Ray Conf., London, 1, 282–284 (1965).

    ADS  Google Scholar 

  • Chilingarian A., K. Avakyan, E. Mnatzakanyan, Y. Muraki, Y. Matsubara, T. Sako, and K. Watanabe “A New Solar Neutron Telescope at Mt. Aragats”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 6, 3445–3448 (2003).

    Google Scholar 

  • Christi M.J., C.M. Benson, F.A. Berry, et al. “The Scintillating Optical Fiber Calorimeter Instrument Performance (SOFCAL)”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake Sitv, 5, 5–8 (1999)

    Google Scholar 

  • Chubenko A.P., A.L. Shepetov, V.P. Antonova, S.V. Kryukov, R.A. Mukhamedshin, V.V. Oskomov, V.V. Piscal, T.Kh. Sadykov, N.N. Sobolevsky, L.I. Vildanova, and A.P. Zhukov “Multiplicity spectrum of NM64 neutron supermonitor and hadron energy spectrum at mountain level”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 2, 789–792 (2003).

    ADS  Google Scholar 

  • Chudakov A.E., N.M. Nesterova, V.I. Zatsepin, and E.I. Tukish “Cherenkov radiation of cosmic ray EAS”, Proc. 6th Intern. Cosmic Ray Conf., Moscow, 2, 46–55 (1959).

    Google Scholar 

  • Clark G.W., F. Scherb, W.B. Smith “Preparation of large plastic scintillators”, Rev. Scient. Instrum. 28, 433 (1957).

    Article  ADS  Google Scholar 

  • Clem J.M. “Atmospheric Yield Functions and the Response to Secondary Particles of Neutron Monitors”, Proc. 26th Intern. Cosmic Ray Conf. Salt Lake Sitv, 7, 31 7–370 (1999)

    Google Scholar 

  • Clem J.M. and L.I. Dorman “Neutron monitor response functions”, Space Science Rev. 93, 335–359 (2000).

    Article  ADS  Google Scholar 

  • Clem J.M., J.W Bieber, P. Evenson, D. Hall, J.E Humble, and M. Duldig “Contribution of obliquely incident particles to neutron monitor rate”, J. Geophys.Res., 102, No. Al2, 26919–26926 (1997).

    Article  ADS  Google Scholar 

  • Cocconi G., V. Cocconi Tongiorgi, and M. Widgoff “Cascades of nuclear disintegration induced by the cosmic radiation”, Phys. Rev. 79, No 5, 768–780 (1950).

    Article  ADS  Google Scholar 

  • Conversi M. “Experiments on cosmic-ray mesons and protons at several altitudes and latitudes”, Phys. Rev., 79, No. 5, 749–767 (1950).

    Article  ADS  Google Scholar 

  • Cordaro E.G. “Antarctic Laboratory for Cosmic Rays: 1991–1995”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 1320–1323 (1995).

    Google Scholar 

  • Coxell H., M.A. Pomerantz, and S.P. Agarwal “Survey of cosmic-ray intensity in the lower atmosphere”, J. Geophys. Res., 71, No 1, 143–154 (1966).

    Article  ADS  Google Scholar 

  • Cronin J.W. “The Pierre Auger Observatory”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, Vol. Invited, Rapporteur, and Highlight Papers, 234–239 (2001).

    Google Scholar 

  • Davis A.J., W. Menn, L.M. Barbier, et al. “Interpretation of the Helium Isotope Ratios Measured by IMAX”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 2, 622–625 (1995).

    Google Scholar 

  • Dementyev A. and N. Sobolevsky, “SHIELD — Universal Monte Carlo Hadron Transport Code Scope and Application”, Proceedings of the Third Workshop on Simulating of Accelerator Radiation Environment (SAR-3), Tsukuba, KEK Proceedings 97–5, 21–31 (1997)

    Google Scholar 

  • Dorman L.I. “The possibility of designing the worldwide network of cosmic ray spectrographs on the basis of the existing network of cosmic ray stations and using the method of the difference coupling coefficients”, Proc. 15th Intern. Cosmic Ray Conf., Plovdiv, 4, 392–394 (1977).

    Google Scholar 

  • Dorman L.I. “Solar Energetic Particle Events and Geomagnetic Storms Influence on People ’s Health and Technology; Principles of Monitoring and Forecasting of Space Dangerous Phenomena by Using On-Line Cosmic Ray Data”, in Proc. 22n d ISTC Japan Workshop on Space Weather Forecast in Russia/CIS (ed. Y. Muraki), Nagoya University, 2, 133–151 (2002).

    Google Scholar 

  • Dorman L.I. “Principles of cosmic ray using for space weather monitoring and forecasting”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 7, 4269–4272 (2003).

    ADS  Google Scholar 

  • Dorman L.I., S.G. Fedchenko, L.V. Granitskij, and G.A. Rische “Coupling and barometer coefficients for measurements of cosmic ray variations at altitudes of 260–400 mb”, Acta Phys. Acad. Sci. Hung., 29 Suppl. 2, 233–236 (1970).

    Google Scholar 

  • Dorman L.I., N. Iucci, M. Murat, M. Parisi, L.A. Pustil’nik, A. Sternlieb, G. Villoresi, and I.G. Zukerman “Dangerous FEP events: real-time data of ground and satellite CR measurements using for monitoring of beginning and forecasting of expected particle fluxes in atmosphere and in space”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 6, 3411–3414 (2003).

    ADS  Google Scholar 

  • Dorman L.I. and Kh.M. Khamirzov “Spectrographical method of cosmic ray variation investigation by inclined muon telescopes with using differential coupling coefficients”, Geomagnetism and Aeronomy, 17, No. 1, 20–25 (1977).

    Google Scholar 

  • Dorman L.I., Kh.M. Khamirzov et al. “Complex muon-neutron detectors for cosmic ray variations investigation, I. Block-scheme, electronics, geometry”, In Research on Solar-Terrestrial Physics Problems, Moscow, NAUKA, 83–88 (1977).

    Google Scholar 

  • Dorman L.I., Kh.M. Khamirzov, A.A. Shadov, and G.Sh. Shkhalakhov “Elbrus spectrograph complex and cosmic ray variations research by spectrographical method”, Izvestia Academy of Sciences USSR, Series Phys., 42, No. 7, 1507–1510 (1978).

    Google Scholar 

  • Dorman L.I., Kh.M. Khamirzov, G.Sh. Shkhalakhov et al. “The Elbrus spectrographical array for studying the cosmic ray variations of the galactic and extragalactic origin”, Proc. 15th Intern. Cosmic Ray Conf., Plovdiv, 3, 274–278 (1977).

    Google Scholar 

  • Dorman L.I. and V.K. Korotkov “Multiple measurements in a neutron monitor with automatic compensation for the coincidence effect”, Proc. 21 th Intern. Cosmic Ray Conf., Adelaide, 7, 204–206 (1990).

    Google Scholar 

  • Dorman L.I., I.Ya. Libin, A.Z. Chechenov, and A.Z. Ghappuev “Telescope of cosmic ray Elbrus spectrograph”, In Research on Solar-Terrestrial Physics Problems, Moscow, NAUKA, 79–82 (1977).

    Google Scholar 

  • Dorman L.I., I.Ya. Libin, V.G. Yanke et al. “Complex muon-neutron detectors for cosmic ray variations investigation, II. Calculations of directionality diagrams, meteorological effects and coupling coefficients”, In Research on Solar-Terrestrial Physics Problems, Moscow, NAUKA, 89–94 (1977).

    Google Scholar 

  • Dorman L.I., L.A. Pustil’nik, A. Sternlieb et al. “Monitoring and Forecasting of Great Solar Proton Events Using the Neutron Monitor Network in Real Time”, IEEE Plasma Sciences, in press (2004).

    Google Scholar 

  • Dorman L.I. and D. Venkatesan “Solar Cosmic Rays”, Space Sci. Review, 64, 183–362 (1993).

    Article  ADS  Google Scholar 

  • Dorman L.I., G. Villoresi, N. lucci, M. Parisi, M.I. Tyasto, O.A. Danilova, and N.G. Ptitsyna “Cosmic ray survey to Antarctica and coupling functions for neutron component near solar minimum (1996–1997), 3, Geomagnetic effects and coupling functions”, J. Geophys. Res. 105, No. A9, 21,047–21,058 (2000).

    Article  ADS  Google Scholar 

  • Dragun G.S., L.V. Kurnosova, V.I. Logachev, LA. Razorenov, I.A. Sirotkin, and M.I. Fradkin “Apparaturos for investigation of cosmic nuclear component on space rockets and satellites”, In Iskusstvennye sputniki Zemli, NAUKA, Moscow, No 9, 86–110 (1961).

    Google Scholar 

  • Duggal S.P. “Relativistic solar cosmic rays”, Rev. Geophys. Space Phys., 17, 1021–1058 (1979).

    Article  ADS  Google Scholar 

  • Duldig M.L. “Muon observations”, Space Sci. Rev., 93, 207–226 (2000).

    Article  ADS  Google Scholar 

  • Duldig M.L. and J. E. Humble “A mobile neutron monitor to intercalibrate the worldwide network”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 10, 4083–4086 (2001)

    Google Scholar 

  • Engel J., T.K. Gaisser, P. Lipari, and T. Stanev “Nucleus-nucleus collisions and interpretation of cosmic ray cascades”, Phys. Rev., D46, No.11, 5013–5025 (1992).

    ADS  Google Scholar 

  • Engelmann G., L. Koch, and G.P. Meyer “Use of semiconductor telescopes in charge and energy spectrometry of cosmic rays”, Proc. 9th Intern. Cosmic Ray Conf., London, 1, 419–422 (1965).

    ADS  Google Scholar 

  • Enqvist T., L. Ding, A.-M. Elo et al. “Underground Multimuon Experiment in Pyhäsalmi Mine”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 2, 997–1000 (2003).

    ADS  Google Scholar 

  • Erlykin A.D., N.M. Nesterova, S.I. Nikolsky, et al. “An installation for the study of the extensive showers and nuclear interaction of the cosmic radiation pafticles of the energies 1012–1016 eV”, Cosmic Rays (NAUKA, Moscow), No. 10, 104–115 (1969).

    Google Scholar 

  • Fassó A., A. Ferrary, A. Ranft, and P.R. Sala “CERN Divisional Report CERN/TIS-RP/97-05”, Proc. of the 2 nd Workshop on Simulating Accelerator Radiation Environment, SARE-2, CERn-Geneva, October 9–11 1995, 158–170 (1997).

    Google Scholar 

  • Fazio G.G. and E.M. Hafner “The OS0-1 high-energy gamma-ray experiment”, J. Geophys. Res., 72, No 9, 2452–2455 (1967).

    Article  ADS  Google Scholar 

  • Fieldhouse P., E.B. Hughes, and P.L. Marsden “Multiple neutron production in an IGY neutron monitor”, J. Phys. Soc. Japan, 17, Suppl. A-II, 518–519 (1962).

    Google Scholar 

  • Furani G., F. Bacciorelli, V. Bidoli et al. “Measurement of Nuclear Mass Distribution of Primary and Recoil Heavy Ions inside MIR Space Station with SilEye Silicon Detector”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake Sity, 5, 128–131 (1999).

    Google Scholar 

  • Geiger K.W. “Evaporation neutrons from cosmic ray nuclear interactions in various elements”, Can. J. Phys., 34, 288–303 (1956).

    Article  ADS  Google Scholar 

  • Gentile S. “The Alpha Magnetic Spectrometer on the International Space Station”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 4, 2145–2148 (2003).

    ADS  Google Scholar 

  • Ginzburg V.L., L.V. Kurnosova, and M.I. Fradkin “Investigation of charged particle intensity during flights of 2-nd and 3-rd ship-satellites” In Iskusstvennye sputniki Zemli, NAUKA, Moscow, No 10, 22–33 (1961).

    Google Scholar 

  • Glasstetter R., T. Antoni, W.D. Apel et al. “Shower Reconstruction Performance of KASCADE-Grande”, Proc. 28th Intern. Cosmic Ray Conf., 2, 781–784 (2003).

    ADS  Google Scholar 

  • Granitskij L.V. and S.G. Bortnik “Apparaturus for cosmic ray intensity registration in stratosphere”, Results of Observations and Investigations in the Period ofIQSY, NAUKA, Moscow, No 5 (1968).

    Google Scholar 

  • Granitskij L.V. and S.G. Bortnik “Decoding instrument to study the second cosmic rays in the atmosphere and stratosphere”, Studies in Geomagnetism, Aeronomy, and Solar Physics, SibIZMIRAN, Eastern-Siberian book issie, No. 2, 356–359 (1971).

    Google Scholar 

  • Granitskij L.V., S.G. Bortnik, L. K. Zhuravleva, and A.F. Neermolov “The instrument to study neutrons and charged particles in the atmosphere and stratosphere”, Studies in Geomagnetism, Aeronomy, and Solar Physics, SibIZMIRAN, Eastern-Siberian book issie, No. 2, 346–350 (1971).

    Google Scholar 

  • Granitskij L.V. and V.N. Medvedev “Metodics of mashine processing of data observations on airplanes”, Results of Observations and Investigations in the Period of IOSY, NAUKA, Moscow. No. 4 (1968).

    Google Scholar 

  • Granitskij L.V. and A.V. Sergeev “On the using counters with 3He dor detection of cosmic ray neutron component”, In Results of Observations and Investigations in IQSY Period, NAUKA, Moscow, No 1, 151–154 (1966).

    Google Scholar 

  • Grigorov N.L., G.P. Kakhidze, V.E. Nesterov, I.D. Rapoport, I.A. Savenko, A.V. Smirnov, A.F. Titenkova, and P.P. Shishkov “Spectrometer of primary cosmic ray particles of high energy for satellite of type Proton”, Space Research (Moscow), 5, No 3, 383–394 (1967).

    Google Scholar 

  • Hamaguchi T., Y.S. Honda, M. Katsumata et al. “Wide Area Small Air Shower Detection System Linked by Internet”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 2, 785–788 (2003).

    ADS  Google Scholar 

  • Hatton C.J. “The Neutron Monitor”, in Progress in Elementary Particle and Cosmic Ray Physics, Ed. J.G. Wilson and S.A. Wouthuysen, North Holland Publishing Co., Amsterdam. 10,3–97 (1971).

    Google Scholar 

  • Hatton C.J. and H. Carmichael “Experimental investigation of the Nm-64 neutron monitor”, Can. J. Phys., 42, No 12, 2443–2472 (1964).

    Article  ADS  Google Scholar 

  • Higashi S., T. Kitamura, S. Miyamoto, Y. Mishima, T. Takahashi, and Y. Watase “Cosmic ray intensities under sea-water at depths down to 1500 meters”, Progr. Theoret. Physics. 34, No 6. 1042–1043 (1965).

    Article  ADS  Google Scholar 

  • Hill D.A. and N.A. Porter “Photography of Cherenkov light from extensive air showers in the atmosphere”, Nature, 191, No 4789, 690–690 (1961).

    Article  ADS  Google Scholar 

  • Hughes E.B. “Neutron production by the cosmic radiation at sea level”, Ph. D. Thesis, University of Leeds, Leeds, England (1961).

    Google Scholar 

  • Hughes E.B. and P.L. Marsden “Response of a standard IGY neutron monitor”, J. Geophys. Res., 71, No 5, 1435–1444 (1966).

    Article  ADS  Google Scholar 

  • Hughes E.B., P.L. Marsden, G. Brooke, M.A. Meyer, and A.W. Wolfendale “Neutron production by cosmic ray protons in lead”, Proc. Phys. Soc., London, A83, 239–251 (1964).

    ADS  Google Scholar 

  • Hughes E.B., P.L. Marsden, M.A. Meyer, and A.W. Wolfendale “Neutron production in lead by cosmic ray protons”, J. Phys. Soc. Japan, 17, Suppl. A-II, 516–517 (1962).

    Google Scholar 

  • Jelley J.V. “Cherenkov radiation from extensive air showers”, In Progress in Elementary Particle and Cosmic Ray Physics, Eds. J.G. Wilson and SA. Wouthuysen, North-Holland Publishing Company, Amsterdam, Vol. 9, 41–159 (1967).

    Google Scholar 

  • Jones S.L., G.H. Ludwig, D.E. Stilwell, J.H. Trainor, and S.H. Way “OGo-E cosmic radiation-nuclear abundance experiment”, IEEE Trans. Nucl. Sci., 14, No 1, 56–63 (1967).

    Article  ADS  Google Scholar 

  • Kaminer N.S. “Cosmic ray intensity registration by plastic scintillators”, Cosmic Rays (NAUKA, Moscow), No 3, 122–133 (1961).

    Google Scholar 

  • Kitamura T., S. Ohara, T. Konishi, et al. “Chaos in cosmic ray air showers”, Astroparticle Phys., 6, No. 3–4, 279–291 (1997).

    Article  ADS  Google Scholar 

  • Kopylov Yu.M. “On the possibility of increasing of effectivness of neutron component intensity registration by using scintillation method” In Investigations in Geomagnetizm and Aeronomy, NAUKA, Moscow, 139–142 (1966).

    Google Scholar 

  • Kozlov V., L. Ksenofontov, K. Kudela, S. Starodubtsev, A. Turpanov, I. Usoskin, and V. Yanke “Real-time COsmic Ray Database (RECORD)”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 6, 3473–3476 (2003).

    ADS  Google Scholar 

  • Krasil’nikov D.D. “The encreasing of barometric effect with increasing of EAS energy”, JETP, 35, No. 1, 295–296 (1958).

    Google Scholar 

  • Krasil’nikov D.D. “On the properties of EAS according to observations near sea level”, Proc. 6th Intern. Cosmic Ray Conf., Moscow, 2, 205–211 (1959a).

    MathSciNet  Google Scholar 

  • Krasil ’nikov D.D. “Daily variation of cosmic ray intensity with energy 2×1014–2×1015 eV”, Proc. 6th Intern. Cosmic Ray Conf., Moscow, 4, 280–281 (1959b).

    Google Scholar 

  • Krasil’nikov D.D. “Apparaturus for registration time variations of EAS frequency with detectors from GeigerMuller counters”, Proc. YaFAN, Ser. Phys., No 3. NAUKA, Moscow, 22–39 (1960).

    Google Scholar 

  • Krüger H., H. Moraal, J.W. Bieber, J.M. Clem, P.A. Evenson, K.R. Pyle, M.L. Duldig, and J.E. Humble “First results of a mobile neutron monitor to intercalibrate the worldwide network”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 6, 3441–3444 (2003).

    ADS  Google Scholar 

  • Krymsky G.F., A.I. Kuzmin, N.P. Chirkov, P.A. Krivoshapkin, G.V. Skripin, and A.M. Altukhov “Cosmic ray distribution and acceptance vectors of detectors, I.”, Geomagnetism and Aeronomia, 6, No. 6, 991–996 (1966).

    Google Scholar 

  • Krymsky G.F., A.I. Kuzmin. N.P. Chirkov, P.A. Krivoshapkin, G.V. Skripin, and A.M. Altukhov “Cosmic ray distribution and acceptance vectors of detectors, II. Methods of investigation of cosmic ray distribution”, Geomagnetism and Aeronomia, 7, No. 1, 11–15 (1967a).

    Google Scholar 

  • Krymsky G.F., A.M. Altukhov, P.A. Krivoshapkin, A.I. Kuzmin, G.V. Skripin, and N.P. Chirkov “Cosmic ray distribution and acceptance vectors of detectors, IV”, Geomagnetism and Aeronomia, 7, No. 5, 794–798 (1967b).

    Google Scholar 

  • Kurnosova L.V., L.A. Razorenov, and M.I. Fradkin “Heavy nuclei in primary cosmic radiation”, In Iskusstvennye sputniki Zemli, NAUKA, Moscow, No 2, 70–74 (1958).

    Google Scholar 

  • Kurnosova L.V., V.I. Logachev, L.A. Razorenov, and M.I. Fradkin “Cosmic ray investigation during the flight of the second space rocket on the Moon”, In Iskusstvennye sputniki Zemli, NAUKA, Moscow, No 5, 30–37 (1960).

    Google Scholar 

  • Kurnosova L.V., L.A. Razorenov, and M.I. Fradkin “Short-term incresings of cosmic ray nuclear component connected with solar activity”, In Iskusstvennye sputniki Zemli, NAUKA, Moscow, No 6, 132–138 (1961a).

    Google Scholar 

  • Kurnosova L.V., L.A. Razorenov, and M.I. Frankin “Investigation of cosmic ray nuclear component on the 3-rd space rocket”, In Iskusstvennye sputniki Zemli, NAUKA, Moscow, No 8. 87–89 (1961b).

    Google Scholar 

  • Lazutin L.L. and E.T. Franzus “Radiozond for cosmic ray intensity measurements in the stratosphere”, Izv. Ac. Sci. USSR, Ser. Phys., 28, No. 12, 2085–2086 (1964).

    Google Scholar 

  • Libin I.Ya., Blokh Ya.L., Dorman L.I et al., 1978. “Development of the scintillation supertelescope”, Cosmic Rays (Moscow, NAUKA), Vol. 18, pp. 76–87.

    Google Scholar 

  • Lin Z., J.W. Bieber, and P. Evenson “Electron trajectories in a model magnetosphere: Simulation and observation under active conditions”, J. Geophys. Res., 100, No. Al2, 23543–23550 (1995).

    Article  ADS  Google Scholar 

  • Lindgren S. “Directional response of cosmic ray telescopes”, Arkiv. Geofys. 5, No 1, 23–29 (1966).

    MathSciNet  Google Scholar 

  • Lindner J.W. “Experimental techniques employed in space physics”, In Space Physics, John Wiley & Sons Inc., New York-London-Sydney, 82–106 (1964).

    Google Scholar 

  • Link J.T., L.M. Barbier, W.R. Binns, et al. “Measuring the abundances of ultra-heavy galactic cosmic rays through ultra long duration ballooning”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 6, 2143–2146 (2001)

    ADS  Google Scholar 

  • Linsley J. “Call for project and ideas in High Energy Astrophysics”, Preprint, Leeds (1979).

    Google Scholar 

  • Lovell J.L., M.L. Duldig, and J.E. Humble “An extended analysis of the September 1989 cosmic ray ground level enhancement”, J. Geophys. Res., 103, 23733–23742 (1998).

    Article  ADS  Google Scholar 

  • Maduev V.D., I.A. Savenko, and M.V. Tel’tsov “Differential magnetic analizator of electrons and protons of small energy’”, Geomagnetizm and Aeronomya, 5, No 5, 950–951 (1965).

    Google Scholar 

  • Matsubara Y., Y. Muraki, A. Okada et “New experiment on the observation of solar neutrons at Chakaltaya”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 1312–1315 (1995)

    Google Scholar 

  • Matsumoto H., H. Koshiishi, T. Goka, M. Fujii, and N. Hasebe “Heavy Ion Telescope onboard the “TSUBASA” Satellite”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 6, 3469–3472 (2003).

    ADS  Google Scholar 

  • Mazur P.O. (for the Pierre Auger Collaboration) “The surface detectors of the Pierre Auger Observatory”, Proc. 28th Intern. Cosmic Ray Conf., 2, 1037–1040 (2003)

    ADS  Google Scholar 

  • McCracken K.G., V.R. Rao, B.C. Fowler, M.A. Shea, and D.F. Smart “Cosmic ray tables (asymptotic directions, variational coefficients and cut-off rigidities”, in IQSY Instruction Manuel, No. 10, London (1965).

    Google Scholar 

  • McCullough J.F. for the Milagro Collaboration “Status of the Milagro Gamma Ray Observatory”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake City, 2, 369–372 (1999).

    Google Scholar 

  • McDonald F.B. “Integration of neutron monitor data with spacecraft observations”, Space Scicnce Rev., 93, 263–284 (2000).

    Article  ADS  Google Scholar 

  • Meyer B. “Korrelierte Neutronen in Simpson-Pile”, P. Dr. Thesis, Ludwig-Maximilians-Universitat (1961).

    Google Scholar 

  • Meyer M.A., A.W. Wolfendale, E.B. Hughes, and P.L. Marsden “The production of neutrons by fast cosmic ray muons”, Proc. Phys. Soc., London, 83, 253–258 (1964).

    Article  ADS  Google Scholar 

  • Matsubara Y., Y. Muraki, S. Sakakibara et al. “A new solar neutron telescope in Hawaii”, Proc. 25th Intern. Cosmic Ray Conf., Durban, 1, 37–40 (1997).

    Google Scholar 

  • Moraal H., A. Belov, and J.M. Clem “Design and coordination of multi-station innternational neutron monitor networks”, Space Sci. Rev., 93, 285–303 (2000).

    Article  ADS  Google Scholar 

  • Moraal H., M.S. Potgieter, P.H. Stoker, and A.J. Van der Walt “Neutron Monitor Latitude Survey of the Cosmic Ray Intensity During the 1986/87 Solar Minimum”, J. Geophys. Res., 94, 1459–1464 (1989).

    Article  ADS  Google Scholar 

  • Munakata K., J.W. Bieber, S.–I. Yasue, et al. “Precursors of geomagnetic storms observed by the muon detector network”, J. Geophys. Res., 105, No. Al2, 27457–27468 (2000).

    Article  ADS  Google Scholar 

  • Muraki Y., Y. Matsubara, I. Imaida, T. Koi et al. “Solar flare and neutron telescope”, Nuclear Physics B-Proceedings Supplements, 60B, 3–11 (1998).

    Article  ADS  Google Scholar 

  • Nagashima K. “Three-dimensional cosmic ray anisotropy in interplanetary space”, Rep. Ionosphere Space Res. Japan, 25, 189–211 (1971).

    ADS  Google Scholar 

  • Nobles R.A., R.A. Alber, E.B. Hughes, L.L. Newkirk, and M. Walt “Neutron multiplicity monitor observations during 1965”, J. Geophys. Res., 72, No 15, 3817–3828 (1967).

    Article  ADS  Google Scholar 

  • Ochi N., T. Wada, T. Konishi, et al. “LAAS Network Observation of Air Showers”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake City, 2, 419–422 (1999). 28th International Cosmic Ray Conference 1005

    Google Scholar 

  • Ochi N., A. Iyono, T. Konishi et al. “The status and future prospect of the LAAS project”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 2, 1005–1008 (2003).

    ADS  Google Scholar 

  • Ohashi Y., A. Okada, T. Aoki, et al. “New narrow angle muon telescope at Mt. Norikura”, Proc. 25th Intern. Cosmic Ray Conf., Durban, 1, 441–444 (1997).

    Google Scholar 

  • Palmeira R.A.R. and K.G. McCracken “Observation of a short-lived cosmic-ray solar flare increase with a high-counting-rate meson detector”, Phys. Rev. Letters, 5, No 1, 15–16 (1960).

    Article  ADS  Google Scholar 

  • Palmeira R.A.R. and R. Williams “Rapid decrease of cosmic-ray intensity”, Nuovo Cimento, 8, 352–355 (1958).

    Article  Google Scholar 

  • Phillips J. and N.R. Parsons “Some experiments with a mobile neutron monitor”, J. Phys. Soc. Japan, 17, Suppl. A-II, 519–523 (1962).

    Google Scholar 

  • Piccardi S. for the PAMELA Collaboration “The PAMELA experiment”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake City, 5, 96–99 (1999).

    Google Scholar 

  • Pyle R. “The Haleakala cosmic ray neutron monitor station: intercalibration with the Huancayo station”, Proc. 23rd Intern. Cosmic Ray Conf., Calgary, 3, 609–612 (1993).

    Google Scholar 

  • Pyle R. “Public access to neutron monitor datasets”, Space Sci. Rev., 93, 381–400 (2000).

    Article  ADS  Google Scholar 

  • Pyle R., P. Evenson, J.W. Bieber, J.M. Clem, J.E. Humble, and M.L. Duldig “The Use of 3He Tubes in a Neutron Monitor Latitude Survey”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake City, 7, 386–389 (1999).

    Google Scholar 

  • Raubenheimer B.C. and P.H. Stoker “Various aspects of the attenuation coefficient of a neutron monitor”, J. Geophys. Res., 79, No. 34, 5069–5076 (1974).

    Article  ADS  Google Scholar 

  • Reinecke J.P.L., H. Moraal, M.S. Potgieter, F.B. McDonald, and W.R. Webber “Different crossovers?”, Proc. 25th Intern. Cosmic Ray Conf., Durban, 2, 49–52 (1997).

    Google Scholar 

  • Rielage K., M. Christl, J. Adams et al. “An engineering prototype of the Imaging Calorimeter for ACCESS (ICA)”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg 6, 2239–2242 (2001)

    ADS  Google Scholar 

  • Rossi B. “The programm of EAS investigations in the MIT”, Proc. 6th Intern. Cosmic Ray Conf., Moscow, 2, 17–30 (1959).

    Google Scholar 

  • Rozman M. and S.F. Kilin “Luminiscense of plastic scintillators”, UFN, 69, No 3, 459–482 (1959).

    Google Scholar 

  • Sako T., Y. Muraki, and N. Hirano “Application of CPLD for the Mexico Solar Neutron Telescope”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 6, 3449–3452 (2003).

    ADS  Google Scholar 

  • Sako T., Y. Muraki, N. Hirano, and H. Tsuchiya “Super Solar Neutron Telescope for the Next Solar Maximum”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 6, 3437–3440 (2003).

    ADS  Google Scholar 

  • Sandström A.E. “Cosmic ray soft component measurements during a flight from Scandinavia across the North pole and around Asia and Europe”, Nuovo Cimento, 8, Suppl. No 2, 263–276 (1958).

    Article  Google Scholar 

  • Sandström A.E., E. Dyring, L. Ekström, and B. Östman “Cosmic ray meson monitors with plastic scintillators”, Arkiv Fys. 29, No 26, 329–341 (1965).

    Google Scholar 

  • Savenko I.A, P.I. Shavrin, V.E. Nesterov, and N.F. Pisarenko “Cosmic ray equator according to data of the 2-nd soviet space-ship”, In Iskusstvennye sputniki Zemli, NAUKA, Moscow, No 10, 45–47 (1961).

    Google Scholar 

  • Savenko I.A., O.I. Savun, P.I. Shavrin, and B.M. Yakovlev “Kombined proton spectrometer for space research”, Geomagnetizm and Aeronomya, 5, No 3, 546–549 (1965a).

    Google Scholar 

  • Savenko I.A., O.I. Savun, and A.V. Yurovskij “Instrument for registration protons with energy E = 3–14 MeV, a—particles, and nuclei with Z > 2”, Geomagnetizm and Aeronomva, 5, No 3, 550–553 (1965b).

    Google Scholar 

  • Scarsi L. for the OA collaboration “The OWL — AIRWATCH Experiment: Overview”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake City, 2, 384–387 (1999).

    Google Scholar 

  • Seo E.S., J.F. Ormes, R.E. Streitmatter, S.J. Stochaj, W.V. Jones, S.A. Stephens, and T. Bowen “Measurement of cosmic-ray proton and helium spectra during the 1987 solar minimum”, Astrophys. J., 378, 763–772 (1991).

    Article  ADS  Google Scholar 

  • Seo E.S., H.S. Ahn, P.S. Allison et al. “CREAM for high energy composition measurements”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 4, 2101–2104 (2003).

    ADS  Google Scholar 

  • Shafer Yu.G. and A.V. Yarygin “Cosmic ray measurements on geophysical rockets”, in Iskusstvennye sputniki Zemli, No 4. NAUKA, Moscow, 184–189 (1960a).

    Google Scholar 

  • Shafer Yu.G. and A.V. Yarygin “Investigations of primary cosmic radiation by the Earth ’s satellite”, Proc. YaFAN, Ser. Phys., NAUKA, Moscow, No 3, 5–14 (1960b).

    Google Scholar 

  • Shea M.A. and D.F. Smart “Fifty years of cosmic radiation data”, Space Sci. Rev., 93, 229–262 (2000).

    Article  ADS  Google Scholar 

  • Shibata S., Y. Munakata, R. Tatsuoka et al. “Calibration of neutron monitor using an accelerator”, Proc. 25th Intern. Cosmic Ray Conf., Durban, 1, 45–48 (1997).

    Google Scholar 

  • Shibata S., Y. Munakata, R. Tatsuoka et al. “Calibration of Neutron Monitor using Accelerator Neutron Beam”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake Sity, 7, 313–316 (1999).

    Google Scholar 

  • Shibata S., Y. Munakata, R. Tatsuoka et al. “Detection efficiency of a neutron monitor calibrated by an accelerator neutron beam”, Nucl Instrum. Meth., A463, 326 (2001).

    ADS  Google Scholar 

  • Simon M. “Status of the PAMELA experiment on-board of the Resurs DK-1 Spacecraft”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 4, 2117–2120 (2003).

    ADS  Google Scholar 

  • Simpson J.A. “The latitude dependence of neutron densities in the atmosphere as a function of altitude”, Phys. Rev. 73, No 11, 1389–1391 (1948).

    Article  ADS  Google Scholar 

  • Smith F.G., W.A. Porter, and J.V. Jelley “The detection of radio pulses of wavelength 6.8 m, in coincidence with extensive air showers, in the energy region 1016–1017 eV”, Proc. 9th Intern. Cosmic Ray Conf., London, 2, 701–705 (1965).

    ADS  Google Scholar 

  • Sparvoli R. “Isotope discrimination with the experiment NINA”, Proc. 25th Intern. Cosmic Ray Conf., Durban, 2, 181–184 (1997).

    Google Scholar 

  • Stoker P.H. “Relativistic Solar Proton Events”, Space Sci. Rev., 73, 327–385 (1994).

    Article  ADS  Google Scholar 

  • Stoker P.H., L.I. Dorman, and J.M. Clem “Neutron monitor design improvements”, Space Science Rev., 93, 361–380 (2000).

    Article  ADS  Google Scholar 

  • Stoker P.H. and Moraal H. “Neutron Monitor Latitude Surveys at Aircraft Altitudes”, Astrophys. Space Sci. 230, 365–373 (1995).

    Article  ADS  Google Scholar 

  • Stozhkov Yu.I. “Cosmic ray modulation by the solar activity and general magnetic field of the Sun”, Thesis of Doctor of Sciences Degree, Moscow, Lebedev Physical Institute, pp.244 (1980).

    Google Scholar 

  • Strong A.W. and I.V. Moskalenko “Propagation of cosmic-ray nucleons in the Galaxy”, Astrophys. J., 509, No. 1, Part 1, 212–228 (1998).

    Article  ADS  Google Scholar 

  • Strong A.W. and I.V. Moskalenko “Models for galactic cosmic-ray propagation”, Adv. Space Res., 27, No. 4, 717–726 (2001).

    Article  ADS  Google Scholar 

  • Szadkowski Z., A.V. Dorofeev, J. Darling et al. “The surface detector trigger for the Auger Observatory”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 2, 805–808 (2003).

    ADS  Google Scholar 

  • Takahashi Y. “Maximum-Energy Auger Air Shower Satellite (MASS) for Observing Cosmic Rays in the Energy Region 1019–1022 eV”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 3, 595–598 (1995).

    Google Scholar 

  • Takashima T., T. Kashiwagi, S. Okuno, K. Mori, and H. Onabe “The Development of the High Energy Particle Detector onboad the SELENE spacecraft”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 6, 3465–3468 (2003).

    ADS  Google Scholar 

  • Teshima M., P. Lipari, and A. Santangelo “EUSO (The Extreme Universe Space Observatory) — Scientific Objectives”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 2, 1069–1072 (2003).

    ADS  Google Scholar 

  • Tsuchiya H., T. Hoshida, Y. Muraki et al. “Arrival of solar neutrons from large zenith angle”, Proc. 27th Intern. Cosmic Ray Cont., Hamburg, 9, 3056–3059 (2001a).

    ADS  Google Scholar 

  • Tsuchiya H., Y. Muraki, K. Masuda et al. “Detection efficiency of a new type of solar neutron detector calibrated by an accelerator neutron beam”, Nucl. Instrum. Meth., A463, 183–186 (2001b).

    ADS  Google Scholar 

  • Usoskin I.G., G.A. Kovaltsov, H. Kananen, and P. Tanskanen “The World Neutron Monitor Network as a Tool for the Study of Solar Neutrons”, Ann. Geophysicae, 15, 375–386 (1997).

    Article  ADS  Google Scholar 

  • Vacci A. “The telescope NINA to investigate nuclear fluxes in the near-Earth space”, Proc. 25th Intern. Cosmic Ray Conf., Durban, 2, 177–180 (1997).

    Google Scholar 

  • Valdes-Galicia J. F., A. Hurtado, O. Musalem et al. “A New Solar Neutron Telescope in Mexico”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 6, 3433–3436 (2003).

    ADS  Google Scholar 

  • Veprik Ya.M., L.V. Kurnosova, L.A. Razorenov, K.D. Tolstov, M.I. Fradkin, and V.S. Chukin “The experience of photo-emulsion development on the board of the ship-satellite”, In Iskusstvennye sputniki Zemli, NAUKA, Moscow, No 11, 35–41 (1961).

    Google Scholar 

  • Vemov S.N. and A.E. Chudakov “Investigations of cosmic rays and the Earth ’s corpuscular radiation by rockets and satellites”, UFN, 70, No 4, 585–619 (1960).

    Google Scholar 

  • Vernov S.N., T.A. Egorov, N.N. Efimov, et al. “The project of a great EAS installation in Yakutsk”, Izvestia Ac. of Sci. of USSR, Ser. Phys., 29, No 9, 1690–1692 (1965).

    Google Scholar 

  • Vernov S.N., N.L. Grigorov, Yu.I. Logachev, and A.E. Chudakov “Cosmic radiation measurements on the Earth ’s satellite”, DAN SSSR, 120, No 6, 1231–1233 (1958).

    Google Scholar 

  • Vernov S.N., G.B. Khristiansen, A.T. Abrosimov, et al. “Description of modernized complex apparatus for EAS investigation”, Izvestia Ac. of Sci. of USSR, Ser. Phys., 28, No 12, 2087–2092 (1964).

    Google Scholar 

  • Vernov S.N., Yu.I. Logachev, A.E. Chudakov, and Yu.G. Shafer “Investigation of cosmic radiation variations”, UFN, 63, No 1, 149–162 (1957).

    Google Scholar 

  • Vernov S.N., I.A. Savenko, P.I. Shavrin, V.E. Nesterov, and N.F. Pisarenko “Outer Earth ’s radiation belt on the altitude 320 km”, In Iskusstvennye sputniki Zemli, NAUKA, Moscow, No 10, 34–39 (1961a).

    Google Scholar 

  • Vernov S.N., I.A. Savenko, P.I. Shavrin, and N.F. Pisarenko “Discovery of the inner radiation belt on the altitude 320 km in the region of South-Atlantic magnetic anomaly”, In Iskusstvennye sputniki Zemli, NAUKA, Moscow, No 10, 40–44 (1961b).

    Google Scholar 

  • Vernov S.N., P.V. Vakulov, E.V. Gorchakov, Yu.l. Logachev, and A.E. Chudakov “Investigation of soft cosmic ray component out of the atmosphere”, In Iskusstvennye sputniki Zemli, NAUKA, Moscow, No 2. 61–69 (1958).

    Google Scholar 

  • Vishnyakov V.V., Tan Syaovej, and A.A. Tyapkin “Low-voltage galogen counters (mechanism of discharge)”, UFN, 72, No 1, 133–152 (1960).

    Google Scholar 

  • Voitovetskij V.K. and N.S. Tolmacheva “Litium-silicat scintillation glasses for detection of slow neutrons”, Atomic Energy (Moscow), 6, No 4, 472–474 (1959).

    Google Scholar 

  • Wefel J.P. (for the ATIC collaboration) “The ATIC experiment: first balloon flight”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 6, 2111–2114 (2001).

    ADS  Google Scholar 

  • Wefel J.P. and T.L. Wilson “The ACCESS Mission: ISS Accommodation Study”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake City, 5, 84–87 (1999).

    Google Scholar 

  • Winckler J.R. “Balloon Study of High-Altitude Radiations during the International Geophysical Year”, J. Geophys. Res., 65, No. 5, 1331–1361 (1960).

    Article  ADS  Google Scholar 

  • Winn M.M. “Cosmic-ray astronomy”, New Scientist, 30, No 490, 24–26 (1966).

    Google Scholar 

  • Yamamoto A., J. Mitchell, K. Abe, et al. “BESS-polar long duration flights in Antarctica”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 6, 2135–2138 (2001)

    ADS  Google Scholar 

  • Yamashita M., L.D. Stephens, and H.W. Patterson “Cosmic-ray produced neutrons at ground level: neutron production rate and flux distribution”, J. Geophys. Res. 71, No 16, 3817–3834 (1966).

    Article  ADS  Google Scholar 

  • Yasue S., S. Mori, S. Sakakibara, and K. Nagashima “Coupling coefficients of cosmic ray daily variations for NM stations”, Report of Cosmic Ray Research Laboratory, 7, Nagoya, Japan (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dorman, L.I. (2004). Experimental Basis of Cosmic Ray Research. In: Cosmic Rays in the Earth’s Atmosphere and Underground. Astrophysics and Space Science Library, vol 303. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2113-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2113-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-6987-3

  • Online ISBN: 978-1-4020-2113-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics