Secondary Cosmic Rays Underground and in the Atmosphere

  • Lev I. Dorman
Part of the Astrophysics and Space Science Library book series (ASSL, volume 303)


Primary CR of galactic and solar origin (mostly protons and nuclei of different Z) undergo nuclear interactions with air atoms and generate a lot of secondary particles (secondary CR). As will be shown in Chapter 11, secondary relativistic positrons and electrons are responsible for lightning between clouds and ground, and between two clouds, as well as for discharges at great altitudes between clouds and the ionosphere (sprites). Primary CR (mostly protons, alpha—particles and heavier nuclei) and some part of secondary CR (nuclear active particles, mostly protons and neutrons) are important for the generation of stable and unstable cosmogenic nuclides in the atmosphere, in the oceans and underground (Chapters 10 and 17). Charged secondary particles such as protons, positive and negative pions, positive and negative muons, positrons and electrons (including re-entrant and splash albedo particles, see below Section 2.12) are important for the ionization of air and chemical processes in the atmosphere (particularly, formation of nitrates and influence on ozone layer — see Chapter 13). Ionization of air by primary and secondary charged CR particles is responsible for the effects of CR on ionosphere and radio wave propagation, for disruptions in radio communications during great solar flare events (Chapter 12). The ionization of air at altitudes higher than a few km caused by primary and secondary charged CR particles affects cloud formation as well, leading to long-term variation in global cloudiness, and consequently to global climate changes (Chapter 14).


Solar Activity Solar Cycle Solar Neutrino Electron Neutrino Neutrino Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aglietta M., B. Alpat, E.D. Alyea, et al. “Neutrino-induced and atmospheric single-muon fluxes measured over 5 decades of intensity by LVD at Gran-Sasso-Laboratory”, Astropart. Phys., 3 (4), 311–320 (1995).ADSGoogle Scholar
  2. Agrawal V., T.K. Gaisser, P. Lipari, and T. Stanev “Atmospheric neutrino flux above 1 GeV”, Phys.Rev., D53, 1314–1323, (1996).ADSGoogle Scholar
  3. Akhmedov E.Kh. and O.V. Bychuk “Resonant spin-flavor precession of neutrinos and the solar neutrino problem”, Zh. Éksp. Teor. Fiz. 95, 442–457 (1989).ADSGoogle Scholar
  4. Ambrosio M., R. Antolini, G. Auriemma, et al. “Vertical muon intensity measured with MACRO at the Gran Sasso laboratory”, Phys. Rev., D52, 3793–3802 (1995).ADSGoogle Scholar
  5. Andreev Yu.M., V.I. Gurentsov, and I.M. Kogai “Muon intensity from the Baksan underground scintillation telescope”, Proc. 20th Intern. Cosmic Ray Conf., Moscow, 6, 200–203 (1987).Google Scholar
  6. Appleton I.C., M.T. Hogue, and B.C. Rastin “A study of the muon momentum spectrum and positive-negative ratio at sea-level”, Nucl. Phys., B26, No. 2, 365–389 (1971).ADSGoogle Scholar
  7. Bahcall J.N., M.H. Pinsonneault, and S. Basu “Solar Models: Current Epoch and Time Dependences, Neutrinos, and Helioseismological Properties”, Astrophys. J., 555, 990–1012 (2001).ADSGoogle Scholar
  8. Bahcall J.N. and W.N. Press “Solar-cycle modulation of event rates in the chlorine solar neutrino experiment”, Astrophys. J., 370, 730–742 (1991).ADSGoogle Scholar
  9. Battistoni G. “A 3-D calculation of the atmospheric neutrino fluxes”, Astropart. Phys., 12, 315–333 (2000).ADSGoogle Scholar
  10. Battistoni G., A. Ferrari, T. Montaroli, and P. Sala “Improvements in the FLUKA calculations of the atmospheric neutrino fluxes”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 3, 1166 (2001).ADSGoogle Scholar
  11. Baxendale J.M., C.J. Hume, and M.J. Thompson “Precise measurement of sea level muon charge ratio”, J. Phys., G1, No. 7, 781–788 (1975).ADSGoogle Scholar
  12. Bazilevskaya G.A., D.Sc. Thesis, Physical Lebedev Institute, Moscow (1985).Google Scholar
  13. Bazilevskaya G.A., D.N. Korolkov, M.B. Krainev, A.K. Svirzhevskaya, and N.S. Svirzhevsky “On the angular distribution of cosmic ray intensity in the Earth ’s atmosphere”, Proc. 25th Intern. Cosmic Ray Conf., Durban, 7, 321–324 (1997).Google Scholar
  14. Bazilevskaya G.A. and V.S. Makhmutov “The electron precipitation into the atmosphere according to cosmic ray experiment in the stratosphere”, Izvestia Academy of Sciences USSR, Series Phys., 63, No. 8, 1670–1674 (1999).Google Scholar
  15. Bazilevskaya G.A., A.M. Mukhamedzhanov, S.I. Nikolsky, Yu.I. Stozhkov, and T.N. Carakhchy’an “Cosmic rays and the neutrino flux in the Davis ’ experiment”, Soy. J. Nucl. Phys., 39, 543–550 (1984).Google Scholar
  16. Berezinsky V. “Solar neutrino as highlight of Astroparticle Physics”, Proc. 25th Intern. Cosmic Ray Conf., Durban, 8, 59–79 (1997).ADSGoogle Scholar
  17. Berger Ch., M. Fröhlich, H. Mönch, et al. “Experimental study of muon bundles observed in the Fréjus detector”, Phys. Rev., D40, No. 7, 2163–2171 (1989).ADSGoogle Scholar
  18. Bleeker J.A.M., J.J. Burger, A. Scheepmaker, B.N. Swanenburg, and Y. Tanaka “A balloon observation of high energy electrons”, Proc. 9th Intern. Cosmic Ray Conf., London, 1, 327–329 (1965).ADSGoogle Scholar
  19. Bollinger L.M., Bull. Amer. Phys. Soc., 25, No. 3, 16 (1950).Google Scholar
  20. Bower C.R., A.S. Beach, J.J. Beatty, et al. “The HEAT-pbar Cosmic Ray Antiproton Experiment”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake Sity, 5, 13–16 (1999).Google Scholar
  21. Briesmeister J.F. “MNCP — A general Monte Carlo N-particle transport code version 4A”, LA-12625-M, pp. 693, Los Alamos Nat. Lab., Los Alamos, N.M. (1993).Google Scholar
  22. Brun B. et al. “GEANT3 User ’s guide”, Rep. DD/EE/84–1, pp 584, Eur. Org. for Nucl. Res., Geneva (1987).Google Scholar
  23. Bucik R., A. Dmitriev, K. Kudela, and S. Ryumin “Gamma-radiation of the Earth ’s atmosphere from the CORONAS-I data”, Proc. 26th Intern. Cosmic Ray Conf., Salt-Lake City, 7, 433–436 (1999).Google Scholar
  24. Bykov A.A., V.Yu. Popov, A.I. Rez, V.B. Semikoz, and D.D. Sokoloff “Aperiodic spin-flavor conversions and electron-antineutrino from the Sun with random magnetic field”, Proc. of EU-Conference New Trends in Neutrino Physics, Ringberg Castle, Germany, 24–29 May 1998, World Scientific Publishing Company, 201–210 (1998).Google Scholar
  25. Castagnoli G.C. and D. Lal “Solar modulation effects in terrestrial production of carbon 14”, Radiocarbon, 22, 133–158 (1980).Google Scholar
  26. Clay J., C.G. Hooft, L.J. Dey, and J.T. Wiersma “An experimental test of the Super Nova hypothesis. Intensity of Cosmic rays in the Earth Crust”, Physica, 4, No. 2, 121–137 (1937).ADSGoogle Scholar
  27. Clay J. and A. Van Gemnert “Decrease of the intensity of cosmic rays in the earth down to 1380 m waterequivalent”, Physica, 6, No. 6, 497–510 (1939a).ADSGoogle Scholar
  28. Clay J. and A.G.M. Van Gemert “Absorption of the hard cosmic rays in different materials”, Physica, 6, No. 7, 649–655 (1939b).ADSGoogle Scholar
  29. Cleveland B.T., T. Daily, R.Jr. Davis, J.R. Distel, K. Lande, C.K. Lee, P.S. Wildenhain, J. Ullman “Measurement of the solar electron neutrino flux with the Homestake chlorine detector”, Astrophys. J., 496, No 1, pt.1, 505–526 (1998).ADSGoogle Scholar
  30. Cousins J.E., W.F. Nash, and A.J. Pointon “The Effect of the Angular Variation of the Intensity on Scattering Distribution of µ-Mesons Underground at a Depth of 40 m w.e.”, Il Nuovo Cimento, 6, 1113–1121 (1957).Google Scholar
  31. Crouch M. “An improved world survey expression for cosmic ray vertical intensity vs. depth in standard rock”, Proc. 20th Intern. Cosmic Ray Conf., Moscow, 6, 165–168 (1987).Google Scholar
  32. Daniel R.R. and S.A. Stephens “Cosmic ray produced electrons and gamma rays in the atmosphere”, Rev. Geophys. Space Sci., 12, No. 2, 233–258 (1974).ADSGoogle Scholar
  33. Davis R. Jr. “A half-century with solar neutrinos”. Nobel Lecture in Physics, 1–21 (2002)Google Scholar
  34. Davis R Jr, A.K. Mann, L. Wolfenstein “Solar neutrinos”, Annu. Rev. Nucl. Part. Sci., 39, 467–506 (1989).ADSGoogle Scholar
  35. De Nolfo G.A., S.W. Barwick, J.J. Beatty et al. “Secondary and re-entrant albedo electrons in the atmosphere”, Proc. 25th Intern. Cosmic Ray Conf., Durbin, 2, 373–376 (1997).Google Scholar
  36. Desorgher L., E.O. Flückiger, M.R. Moser, and R. Bütikofer “Geant Simulation of the Propagation of Cosmic Rays through the Earth ’s Atmosphere”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 7, 4277–4280 (2003).ADSGoogle Scholar
  37. Dorman L.I. “Solar-Neutrino Variations: A Manifestation of Nonzero Neutrino Mass and Magnetic Moment, and Mixing”, Physics ofAtomic Nuclei, 63, No. 6, 984–988 (2000a).ADSGoogle Scholar
  38. Dorman L.I. “The Asymmetry of Solar-Neutrino Fluxes” Physics of Atomic Nuclei, 63, No. 6, 989–992 (2000b).ADSGoogle Scholar
  39. Dorman L.I., V.L. Dorman, and A.W. Wolfendale “North-South asymmetry in solar neutrino fluxes and in correlation coefficients”, Proc. 23th Intern. Cosmic Ray Conf.. Calgary, 4. 873–876 (1993).Google Scholar
  40. Dorman L.I., V.L. Dorman, and A.W. Wolfendale “The solar cycle variations of solar neutrino flux and heliolatitude anisotropy”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 1239–1242 (1995).Google Scholar
  41. Dorman L.I. and A.W. Wolfendale “The correlation of the solar neutrino rate with solar activity”, J. Phys. G: Nucl. Part. Phys., 17, 769–778 (1991a).ADSGoogle Scholar
  42. Dorman L.I. and A.W. Wolfendale “Solar neutrino rate and solar activity”, Geophys. Astrophys. Fluid Dynamics, 62, 173–182 (1991b).ADSGoogle Scholar
  43. Dorman L.I. and A.W. Wolfendale “Relationship between the solar neutrino counting rate in the Homestake experiment, solar activity, cosmic ray intensity and the Earth ’s heliolatitude”, Proc.22th Intern. Cosmic Ray Conf., Dublin, 3, 736–739 (1991c).Google Scholar
  44. Dorman L.I. and A.W. Wolfendale “The solar neutrino problem: connection with elementary particle physics and the physics of the solar interior”, Proc.22th Intern. Cosmic Ray Conf., Dublin, 3, 740–743 (1991d).Google Scholar
  45. DuVernois M.A., A.S. Beach, J.J. Beatty et al. “Splash and reentrant albedo observations of electrons and positrons at a 4.2 GV vertical magnetic cutoff”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 10, 4003–4006 (2001a).ADSGoogle Scholar
  46. DuVernois M.A., J.J. Beatty, C. Bower et al. “Absolute rigidity spectra of protons and helium from 16 to 250 GV”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 5, 1618–1621 (2001b).ADSGoogle Scholar
  47. Ehmert A. “Die Absorptionkurve der harten component der kosmichen ultrasrahlung”, Zs. Phys., 106, No. 11–12. 751–772 (1937).ADSGoogle Scholar
  48. Engel R., T.K. Gaisser, and T. Stanev “The flux of atmospheric muons”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 3, 1029–1032 (2001).ADSGoogle Scholar
  49. Follet D.H. and I.D. Crawskaw “Cosmic ray measurements under thirty meters of clay”, Proc. Roy. Soc., A155, 546–558 (1936).ADSGoogle Scholar
  50. Gaisser T.K. and T. Stanev “Cosmic Rays”, Phys. Rev., D54, No. 1, 122–127 (1996).Google Scholar
  51. Gavryusev V., J. Provost, E. Gavryuseva, and G. Berthomieu “The Spectrum of Gravity Modes as a Function of the Solar Structure — Model with a Mixed Core”, Sol. Phys., 133, 139–161 (1991).ADSGoogle Scholar
  52. George E.P. “Observations of cosmic rays underground and their interpretation”, in Progress in Cosmic Ray Physics, ed. By J.G. Wilson, North Holland Publ. Co., Amsterdam, 1, 395–454 (1952).Google Scholar
  53. Golenkov A.E., A.K. Svirzhevskaya, N.S. Svirzhevsky, and Yu.I. Stozhkov “Cosmic ray latitude survey in the stratosphere during the 1987 solar minimum”, Proc. 21st Intern. Cosmic Ray Conf., Adelaida, 7, 14–17 (1990).Google Scholar
  54. Gonzales W.D., B.T. Tsurutani, P.S. McIntosh, and A.L. Clua de Gonzalez “Coronal hole-active regioncurrent sheet (CHARCS) association with intense interplanetary and geomagnetic activity”, Geophys. Res. Lett., 23, No. 19, 2577–2580 (1996).ADSGoogle Scholar
  55. Hansen P., M. Ambriola, S. Bartalucci, et al. “A new measurement of muon spectra in the atmosphere”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 3, 921–924 (2001).Google Scholar
  56. Hebbeker T. and C. Timmermans, Preprint hep-ph/0102042 (2001).Google Scholar
  57. Hirata K.S., T. Kajita, M. Koshiba et al. “Observation of a neutrino burst from the supernova SN 1987A”, Phys. Rev. Lett., 58, No. 14, 1490–1493 (1987).ADSGoogle Scholar
  58. Hirata K.S., T. Kajita, M. Koshiba et al. “Experimental-study of the atmospheric neutrino flux”, Phys. Lett., B 205, No. 2–3, 416–420 (1988).Google Scholar
  59. Hirata K.S., T. Kajita, K. Kifune et al. “Observation of 8B-solar neutrinos in the Kamiokande-II detector”, Phys. Rev. Lett., 63, No. 1, 16–19 (1989).ADSGoogle Scholar
  60. Honda M., T. Kajita, K. Kasahara, and S. Midorikawa “Calculation of the flux of atmospheric neutrinos”, Phys. Rev. D52, 4985–5005 (1995).ADSGoogle Scholar
  61. Hovestadt D. and P. Meyer “The geomagnetic cut-off at Ft. Churchill and the primary cosmic ray electron spectrum from 10 MeV to 12 GeV in 1968”, Acta Phys. Acad. Scient. Hungaricae, 29, suppl. 2, 525–531 (1970).Google Scholar
  62. Israel M.H. “Cosmic-Ray Electrons between 12 MeV and 1 GeV in 1967”, J. Geophys. Res., 74, No. 19, 4701–4713 (1969).ADSGoogle Scholar
  63. Kajita T. “Muons and neutrinos”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, Vol. Invited, Rapporteur, and Highlight Papers, 194–205 (2001).Google Scholar
  64. Kasahara K., E. Mochizuki, S. Torii, et al. “Atmospheric gamma-ray observations with BETS for calibrating atmospheric neutrino flux calculations”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 3, 966–969 (2001).ADSGoogle Scholar
  65. Kolhörster W. “Intensitates und Richtungsmessungen der durchdringenden Strahlung”, Berl. Ber., 24, 366–377 (1923).Google Scholar
  66. Kolhörster W. “The Hardest Cosmic Rays and the Electric Charge of the Earth”, Nature, 132, No. 3332, 407–407 (1933).ADSGoogle Scholar
  67. Koshiba M. “Observational Neutrino Astrophysics”, Phys. Rep., 220, No. 5–6, 229–381 (1992).ADSGoogle Scholar
  68. Koshiba M. “Birth of Neutrino Astrophysics”, Nobel Lecture in Physics, 1–15 (2002).Google Scholar
  69. Letaw J.R., G.H. Share, R.L. Kinzer, R. Silberberg, and E.L. Chupp “Satellite observation of atmospheric nuclear gamma radiation”, J. Geophys. Res., 94, 1211–1221 (1989).ADSGoogle Scholar
  70. Ling J.C. “A semiempirical model for atmospheric gamma rays from 0.3 to 10 MeV at a geomagnetic latitude of 400”, J. Geophys. Res., 80, 3241–3252 (1975).ADSGoogle Scholar
  71. Lingenfelter R.E. “Production of carbon 14 by cosmic ray neutrons”, Reviews of Geophysics, 1, No. 1, 35–55 (1963)ADSGoogle Scholar
  72. Mahoney W.A., J.C. Ling, and A.S. Jacobson “HEAO 3 measurements of the atmospheric positron annihilation line”, J. Geophys. Res., 86, 11098–11104 (1981).ADSGoogle Scholar
  73. Makhmutov V.S., G.A. Bazilevskaya, A.I. Podgorny, Yu.I. Stozhkov, and N.S. Svirzhevsky “The precipitation of electrons into the Earth ’s atmosphere during 1994”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 1114–1117 (1995).Google Scholar
  74. Makhmutov V.S., G.A. Bazilevskaya, and M.B. Krainev “Characteristics of energetic electron precipitation into the Earth ’s polar atmosphere and geomagnetic conditions”, Adv. Space. Res. 2001a (in press).Google Scholar
  75. Makhmutov V.S., G.A. Bazilevskaya, M. B. Krainev, and M. Storini “Long-term cosmic ray experiment in the atmosphere: energetic electron precipitation events during 20–23 solar activity cycles”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 10, 4196–4199 (2001b).ADSGoogle Scholar
  76. Makhmutov V.S., G.A. Bazilevskaya, M.B. Krainev, Y.I. Stozhkov, A.K. Svirzhevskaya, N.S. Svirzhevsky, S.Y. Malin “Semiannual variation in the number of energetic electron precipitation events recorded in the polar atmosphere”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 7, 4233–4236 (2003).Google Scholar
  77. Masarik J. and J. Beer “Simulation of particle fluxes and cosmogenic nuclide production in the Earth ’s atmosphere”, J. Geophys. Res., 104, No. D10, 12099–12111 (1999).ADSGoogle Scholar
  78. Massetti S. “Is there a North-South asymmetry in the Homestake neutrino data connected with solar activity?”, Proc. 24th Intern. Cosmic Ray Conf., Rome. 4. 1251–1254 (1995)Google Scholar
  79. Massetti S., M. Storini, and N. Lucci “Summary of correlative analyses between Homestake neutrino data and related to solar activity”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 1243–1247 (1995).Google Scholar
  80. Menon M., P.V. Ramanamurthy, B.V. Sreekantan, and S. Miyake “Cosmic Ray Intensity at Great Depth and Neutrino experiments”, Nuovo Cimento, 30, No. 5, 5766–5777 (1963).Google Scholar
  81. Mikheyev S.P. and A.Yu. Smirnov “Resonance enhancement of oscillations in matter and solar neutrino spectroscopy”, Soy. J. Nucl. Phys. 42, No. 6, 1441–1448 (1985).Google Scholar
  82. Mikheyev S.P. and A.Yu. Smirnov “Resonant amplification of v oscillations in matter and solar-neutrino spectroscopy”, Nuovo Cimento, 9C, Ser. 1, No 1. 17–26 (1986).Google Scholar
  83. Millikan R.A. “High Frequency Rays of Cosmic Origin”, Nature, 116, No.2927, 823–826 (1925).ADSGoogle Scholar
  84. Millikan R.A. and G.H. Cameron “High Frequency Rays of Cosmic Origin III. Measurements in Snow-Fed Lakes at High Altitudes”, Phys. Rev., 28. No. 5. 851–868 (1926).ADSGoogle Scholar
  85. Millikan R.A. and G.H. Cameron “New Precision in Cosmic Ray Measurements; Yielding Extension of Spectrum and Indications of Bands”, Phys. Rev., 31, No. 6, 921–930 (1928).MATHADSGoogle Scholar
  86. Millikan R.A. and G.H. Cameron “A More Accurate and More Extended Cosmic-ray Ionization-Depth Curve, and the Present Evidence for Atom-Building”, Phys. Rev., 37, No. 3, 235–252 (1931).ADSGoogle Scholar
  87. Motoki M., T. Sanuki, S. Orito, et al. “Precise measurement of atmospheric muon fluxes at sea level”, Proc. 27th Intern. Cosmic Ray Conf.. Hamburg 3, 927–930 (2001)ADSGoogle Scholar
  88. Myssowsky L. and L. Tuwim “Versuche uber die Absorption der Hohenstrahlung im Wasser”, Ztschr. Phys., 35, No. 4, 299–305 (1925).Google Scholar
  89. Nandi B.C. and M. Sinha “Charge ratio of muons at sea level in range 5–600 GeV/c”, Nucl. Phys., B40, No. 1, 289–297 (1972)ADSGoogle Scholar
  90. Oakley D.S., H.B. Snodgrass, R.K. Ulrich, and T.L. VanDeKop “On the correlation of solar surface magnetic flux with solar neutrino capture rate”. Astrophys. Lett., 437, L63–L66 (1994)ADSGoogle Scholar
  91. Oakley D.S. and H.B. Snodgrass “Correlation Studies of Solar Magnetic with Solar Neutrino Flux”, Bull. Am. Phys. Soc., 40, No. 7, 1511 (1995).Google Scholar
  92. Oakley D.S. and H.B. Snodgrass, Technical Progress Report No. 65, University of Colorado Nuclear Physics Laboratory (1996).Google Scholar
  93. Oakley D.S. and H.B. Snodgrass “Interactions between solar neutrinos and solar magnetic fields”, Astropart. Phys., 7, No. 4, 297–306 (1997).ADSGoogle Scholar
  94. Ramaty R., B. Kozlovsky, and R.E. Lingenfelter “Nuclear Gamma Rays from Energetic Particle Interactions”, Astrophys. J. Suppl., 40,487–495 (1979).ADSGoogle Scholar
  95. Randell C.A. and W.E. Hazen “The ratio of electrons to mesons 1100 feet underground”, Phys. Rev., 81, No. 1, 144–145 (1951).ADSGoogle Scholar
  96. Rastin B.C. “A study of the muon charge ratio at sea level within the momentum range 4 to 2000 GeV/c”, J. Phys., G10, No. 11, 1629–1638 (1984).ADSGoogle Scholar
  97. Raychaudhuri P. “Time variations in Kamiokande solar neutrino data”, Mod. Phys. Lett., A6, No.22, 2003–2007 (1991).ADSGoogle Scholar
  98. Reedy R.C. “Nuclide production by primary-ray protons”, J Geophys. Res., 92, Sunni.. E697–E702, 1987.ADSGoogle Scholar
  99. Reedy R.C. and J. Masarik “Cosmogenic-nuclide depth profiles in the lunar surface”, Lunar Planet. Sci, 25, 1119–1120 (1994).ADSGoogle Scholar
  100. Reeves G.D. “Relativistic electrons and magnetic storms: 1992–1995”, Geoph. Res. Lett., 25, No. 11, 1817–1820 (1998).ADSGoogle Scholar
  101. Regener E. “Spectrum of cosmic rays”, Nature, 127, 233–234 (1931).ADSGoogle Scholar
  102. Rivin Yu.R. “Temporal variations in the flux of high-energy solar neutrinos based on data from the detector in South Dakota”, Astron. Reports, 37, 202–208 (1993).ADSGoogle Scholar
  103. Rivin Yu.R. and V.N. Obridko “Cyclic variation of the high-energy solar neutrino flux”, Astron. Reports, 41, 76–84 (1997).ADSGoogle Scholar
  104. Rockstroh J. and W.R. Webber “A measurement of the spectrum of cosmic ray electrons between 20 Me V and 3 GeV in 1968 — Further evidence for extensive time variations of this component”, J. Geophys. Res., 74, No. 21, 5041–5053 (1969).ADSGoogle Scholar
  105. Sanuki T., Y. Yamamoto, M. Motoki, et al. “Atmospheric muons at various altitudes”, Proc. 2/th Intern. Cosmic Ray Conf., Hamburg, 3, 950–953 (2001).Google Scholar
  106. Schmoker J.W. and J.A. Earl “Magnetic-Cloud-Chamber Observations of Low Energy Cosmic-Ray Electrons”, Phys. Rev., 138, No. 1B, B300–B302 (1965)ADSGoogle Scholar
  107. Share G.H., R.J. Murphy, and E. Rieger “Atmospheric gamma-ray lines produced by cosmic rays and solar energetic particles”, Proc 26th Intern. Cosmic Ray Conf., Salt-Lake City, 7, 329–332 (1999).Google Scholar
  108. Shea M.A., D.F. Smart, and L.C. Gentile “Estimating cosmic ray vertical cutoff rigidities as a function of the Mcllwain L-parameter for different epochs of the geomagnetic field”, Phys. of the Earth and Planet. Interiors, 48, 200–205 (1987).ADSGoogle Scholar
  109. Snodgrass H.B. and D.S. Oakley “Comment on Absence of Correlation between the Solar Neutrino Flux and the Sunspot Number”, Phys. Rev. Letters, 83, No. 9, 1894 (1999)ADSGoogle Scholar
  110. Sreekantan B.V., S. Naranan, and P.V. Ramanamurthy “On the angular distribution of penetrating cosmic-ray particles at a depth 103 mwe below ground”, Proc. Indian Academy of Sciences, Ser. A, 43, No. 2, 113–129 (1956).Google Scholar
  111. Stephens S.A. “Atmospheric electron spectrum over Hyderabad and a study of re-entrant albedo electrons”, Acta Phys. Acad. Scient. Hungaricae, 29, suppl. 2, 727–732 (1970)Google Scholar
  112. Stozhkov Y.I., N.S. Svirzhevsky, and V.S. Makhmutov “Cosmic ray measurements in the atmosphere”, Preprint No. 8, FIAN, Moscow, 1–21, 2001.Google Scholar
  113. Sturrock P.A., G. Walther and M.S. Wheatland “Apparent Latitudinal Modulation of the Solar Neutrino Flux”, Astrophys. J., 507, 978–983 (1998).ADSGoogle Scholar
  114. Tsuji S., K. Himei, T. Katayama, et al. “Atmospheric muon measurements I: Vertical measurements”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 3, 931–934 (2001).ADSGoogle Scholar
  115. Vannuccini E., Grimani C., Papini P., and Stephens S.A. “The Secondary Proton Spectrum at Small Atmospheric Depths”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 7, 4287–4290 (2003)ADSGoogle Scholar
  116. Verma S.D. “Measurement of the charged splash and re-entrant albedo of the cosmic radiation”, J. Geophys. Res., 72, No.3, 915–925 (1967).ADSGoogle Scholar
  117. Verma S.D. and S.P. Bhatnagar “Observation of Energy Spectrum of Electron Albedo in Low Latitude Region at Hyderabad, India”, Proc. 19th Intern. Cosmic Ray Conf., La Jolla, 5, 316–319 (1985).Google Scholar
  118. Walther G. “On the Solar-Cycle Modulation of the Homestake Solar Neutrino Capture Rate and the Shuffle Test”, Astrophys. J. 513, 990–996 (1999).ADSGoogle Scholar
  119. Willett J.B. and W.A. Mahoney “High spectral resolution measurement of gamma ray lines from the earth ’s atmosphere”, J. Geophys. Res., 97, 131–139(1992).ADSGoogle Scholar
  120. Wilson V.C. “Cosmic-Ray Intensities at Great Depths”, Phys. Rev., 53, No. 5, 337–343 (1938a).ADSGoogle Scholar
  121. Wilson V.C. “On the Nature of the Penetrating Cosmic Rays”, Phys. Rev., 53, No. 11, 908–909 (1938b).ADSGoogle Scholar
  122. Wolfenstein L. “Neutrino oscillations in matter”, Phys. Rev. D17, 2369–2374 (1978).ADSGoogle Scholar
  123. Zanini A., C. Ongaro, E. Durisi, L. Visca, S. DeAgostini, F. Fasolo, M. Pelliccioni, and O. Saavedra “Differential Neutron Flux in Atmosphere at Various Geophysical Conditions”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 7, 4291–4294 (2003)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Lev I. Dorman
    • 1
    • 2
  1. 1.Israel Cosmic Ray Center, Space Weather Center, and Emilio Segrè ObservatoryTel Aviv University, Israel Space Agency, and TechnionQazrinIsrael
  2. 2.Cosmic Ray Department of IZMIRANRussian Academy of ScienceTroitskRussia

Personalised recommendations