Advertisement

Meteorological Effects Application to Cosmic Ray Latitude Survey Data Processing

  • Lev I. Dorman
Part of the Astrophysics and Space Science Library book series (ASSL, volume 303)

Abstract

Together with direct measurements of primary CR, either with space probes outside the geomagnetic field, or with balloons in the upper atmospheric layers, the technique of continuous measurements of the secondary components by ground based detectors gives unique information on the time variations of the CR distribution function outside the magnetosphere, as well as of the cut off rigidity planetary distribution. On the other hand, the time variations of the CR distribution function out of the magnetosphere are produced by two main causes: 1) the continuous modulation of the galactic CR flux by Heliosphere dynamic processes over various time scales (from hours to the solar cycle time span); and 2) the sporadic emission from the Sun of energetic particles accelerated in solar flare regions and reaching the Earth after propagation through the solar corona and interplanetary space. Therefore these variations contain important information on dynamic processes in the Heliosphere and acceleration phenomena in solar atmosphere; their study is an essential tool for determining the models appropriate to the different modulation processes.

Keywords

Counting Rate Atmospheric Absorption Neutron Monitor Antarctic Region Equatorial Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleksanyan, T.M., V.M. Bednazhevsky, Ya.L. Blokh, L.I. Dorman, and F.A. Starkov “Coupling coefficients of the neutron component for the stars of various multiplicities inferred from the measurements on board research vessel “Academician Kurchatov”, Proc. of 16th Intern. Cosmic Ray Conf., Kyoto, 4, 315–320 (1979a).Google Scholar
  2. Aleksanyan, T.M., Ya.L. Blokh, L.I. Dorman, and F.A. Starkov “Examination of the differences in the coupling coefficients and barometric coefficients of 3NM-64 neutron supermonitor and lead-free monitor”, Proc. of 16th Intern. Cosmic Ray Conf., Kyoto, 4, 321–324 (1979b).Google Scholar
  3. Aleksanyan, T.M., L.I. Dorman, V.G. Yanke and V.K. Korotkov “Coupling functions for lead and lead-free neutron monitors from the latitudinal measurements performed in 1982 in the survey by research vessel “Academician Kurchatov”, Proc. of 19th Intern. Cosmic Ray Conf., La Jolla, 5, 300–303 (1985).Google Scholar
  4. Allkofer O. C., R. D. Andresen, E. Bagge, W. D. Dau, and H. Funk “Der Einfluss des Erdmagnetfeldes auf die kosmische Strahlung, I, Untersuchungen der Nukleonenkomponente der kosmische Strahlung waehrend der atlantischen Espedition IQSY 1965 auf dem Forschungsschif “Meteor”, in “Meteor ” Forschungsergebnisse, Reihe B, Heft 3, Gebruder Borntraeger, Berlin (1969).Google Scholar
  5. Avdeev E.A., V.N. Alexandrov, V.M. Bednaghevsky, Ya.L. Blokh, V.V. Viskov, L.I. Dorman, S.F. Ilgach, and I.N. Kapustin “Investigation of cosmic ray geomagnetic effects by expedition measurements on the scientific ship “Academician Kurchatov”, Cosmic Rays (Moscow, NAUKA), 14, 34–50 (1974).ADSGoogle Scholar
  6. Avdeev E.A., V.M. Bednaghevsky, Ya.L. Blokh, V.V. Viskov, L.I. Dorman, and A.A. Manshilina “Experimental and theoretical investigations of coupling coefficients and integral multiplicities”, Izvestia Academy of Sciences USSR, Series Phys., 36, No. 11, 2451–2459 (1972).Google Scholar
  7. Avdeev E.A., V.M. Bednaghevsky, Ya.L. Blokh, V.V. Viskov, L.I. Dorman, and A.A. Manshilina “Studies of the coupling coefficients of the cosmic ray neutron component for the period of 1967–1971”, Proc. 13th Intern. Cosmic Ray Conf., Denver, 2, 843–850 (1973).ADSGoogle Scholar
  8. Bachelet F., P. Balata, E. Dyring, and N. Iucci “The intercalibration of the cosmic ray neutron monitors at 9 European sea level stations and the deduction of a daily latitude effect in 1963”, Nuovo Cim, 36, 762–772 (1965).CrossRefGoogle Scholar
  9. Bachelet, F., N. Iucci, G. Villoresi, and B. Sporre “The cosmic ray spectrum modulation above 2 GV during the descending phase of solar cycle number 19. I: A comprehensive treatment of the neutron monitor data from the worldwide station network and latitude surveys”, Nuovo Cim, 7B, No. 1, 17–33 (1972a).ADSGoogle Scholar
  10. Bachelet, F., N. Iucci, G. Villoresi, and N. L. Zangrilli “The cosmic ray spectrum modulation above 2 GV. IV: The influence on the attenuation coefficient of the nucleonic component”, Nuovo Cim, 11B, No. 1, 1–12 (1972b).ADSCrossRefGoogle Scholar
  11. Bachelet, F., N. Iucci, M. Parisi, and G. Villoresi “The cosmic ray spectrum modulation above 2 GV during the descending phase of solar cycle number 19, V: The influence on the coupling functions of the nucleonic component”, Nuovo Cim., 18B, No. 2, 258–264 (1973).ADSCrossRefGoogle Scholar
  12. Belov, A.V., L.I. Dorman and V.G. Yanke “The simplest versions of the global-spectrographical method”, Proc. of 18th Intern. Cosmic Ray Conf., Bangalore, 10, 144–147 (1983).Google Scholar
  13. Belov, A.V., L.I. Dorman, R.T. Gushchina, and V.G. Yanke “Temporal and latitudinal dependence of the temperature effect for neutron component of cosmic rays”, Proc. of 24th Intern. Cosmic Ray Conf., Rome, 4, 1141–1144 (1995).Google Scholar
  14. Bieber, J.W., M. Duldig, P. Evenson, D. Hall, J. Humble “Neutron monitor survey of the Southern ocean”, Proc. of 24th Intern. Cosmic Ray Conf., Rome, 4, 1078–1081 (1995).Google Scholar
  15. Bieber, J.W., P. Evenson, J.E. Humble, and M.L. Duldig “Cosmic ray spectra deduced from neutron monitor surveys”, Proc. of 25th Intern. Cosmic Ray Conf., Durban, 2, 45–48 (1997).Google Scholar
  16. Blokh Ya.L., L.I. Dorman, I.V. Dorman, V.M. Bednaghevsky, V.V. Viskov and A.A. Manshilina “Research of cosmic ray latitude effects”, Izvestia Academy of Sciences USSR, Series Phys., 38, No. 9, 1970–1973 (1974).Google Scholar
  17. Carmichael, H. and M. Bercovitch “V. Analysis of IQSY cosmic ray survey measurement”, Canad. J. Phys., 47, No. 19, 2051–2055 (1969).ADSCrossRefGoogle Scholar
  18. Clem, J.M., J.W. Bieber, M. Duldig, P. Evenson, D. Evenson, D. Hall, and J. Humble “Contribution of obliquity incident particles to neutron counting rate”, J. Geophys. Res., 102, 26919–26926 (1997).ADSCrossRefGoogle Scholar
  19. Danilova O.A., L.I. Dorman, N. Iucci, M. Parisi, N.G. Ptitsyna, M.I. Tyasto, and G. Villoresi “Latitude survey in December 1996–March 1997, 1. Cut-off rigidities for different azimuth and zenith angles”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 10, 4039–4042 (2001).ADSGoogle Scholar
  20. Dorman L.I. “Influence of meteorological factors on the cosmic ray latitude effect and the process of meson generation”, J. of Experim. and Theoret. Phys. (JETP), Moscow, 26, No. 5, 504–505 (1954).Google Scholar
  21. Dorman, L.I. “Geophysical effects and properties of the various components of the cosmic radiation in the atmosphere”, Proc. of 11th Intern. Cosmic Ray Conf., Volume of Invited Papers and Rapporteur Talks, Budapest, 381–444 (1969).Google Scholar
  22. Dorman L. I. “Cosmic rays in the atmosphere and magnetosphere of the Earth and in the interplanetary space (invited review)”, In “Geomagnetism and High Layers of the Atmosphere”, Moscow, NAUKA, 7–82 (1975).Google Scholar
  23. Dorman L.I. “Geomagnetic and atmospheric effects in primary and secondary cosmic rays; cosmogeneous nuclei (rapporteur paper)”, Proc. 20th Intern. Cosmic Ray Conf., Moscow, 8, 186–237 (1987).ADSGoogle Scholar
  24. Dorman L.I., Ya.L. Blokh, N.S. Kaminer, I.A. Pimenov and A.B. Rodionov “Inserting of corrections on cosmic ray planetary variations in the data of latitude cosmic ray expeditions”, Geomagnetism and Aeronomy, 11, No. 2, 207–210 (1971).Google Scholar
  25. Dorman L.I., O.A. Danilova, N. Iucci,. M. Parisi, N. G. Ptitsina, M. I. Tyasto, G. Villoresi “Latitude survey in December 1996–March 1997, 2. Apparent cut-off rigidities”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 10, 4043–4046 (2001).ADSGoogle Scholar
  26. Dorman, L.I., L.V. Granitskij, S.G. Bortnik, G.A. Novikova and I.M. Raikhbaum “Investigations of cosmic ray neutron component on atmospheric depth 260–315 mb”, Izvestia Academy of Sciences of USSR, Series Phvs, 31, No. 8, 1322–1324 (1967c).Google Scholar
  27. Dorman L.I. and N.S. Kaminer “Meteorological effects of cosmic rays”, Izvestia Academy of Sciences of USSR, Series Phys., 33, No. 11, 1926–1929 (1969).Google Scholar
  28. Dorman, L.I., V.A. Kovalenko, and N.P. Milovidova “Latitude distribution and coupling coefficients for cosmic radiation neutron and general ionizing components”, Izvestia Academy of Sciences of USSR, Series Phys., 31, No. 8, 1387–1390 (1967a).Google Scholar
  29. Dorman L.I., V.A. Kovalenko, and N.P. Milovidova “The latitude distribution, integral multiplicities and coupling coefficients for the neutron, total ionizing and hard components of cosmic rays”, Nuovo Cimento, Ser. X, 50, 27–39 (1967b).ADSCrossRefGoogle Scholar
  30. Dorman L.I., V.A. Kovalenko, N.P. Milovidova and S.B. Chernov “The cosmic ray intensity distribution on the territory of USSR and the coupling coefficients”, Acta Phys. Sci. Hung., 29, Suppl. 2, 359–365 (1970).Google Scholar
  31. Dorman, L.I., A.A. Lagutin, and G.V. Chernyaev “Temperature effect of neutron component”, Proc. 21 th Intern. Cosmic Ray Conf., Adelaide, 7, 81–84 (1990).Google Scholar
  32. Dorman, L.I., Yu.I. Okulov, N.S. Kaminer, and A. A. Manshilina “Determination of coupling coefficients of the cosmic ray neutron component on the base of ship ”Zarya “ data”, Izvestia Academy of Sciences of USSR, Series Phys., 30, No. 11, 1873–1874 (1966).Google Scholar
  33. Dorman L.I., G. Villoresi, N. Iucci, M. Parisi, and N.G. Ptitsyna “Cosmic ray survey to Antarctica and coupling functions for neutron component in solar minimum (1996–1997), 3. Geomagnetic effects and coupling functions”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake City, 7, 382–385 (1999).Google Scholar
  34. Dorman L.I., G. Villoresi, N. Iucci, M. Parisi, M.I. Tyasto, O.A. Danilova, and N.G. Ptitsyna “Cosmic ray survey to Antarctica and coupling functions for neutron component near solar minimum (1996–1997), 3, Geomagnetic effects and coupling functions”, J. Geophys. Res., 105, No. A9. 21047–21058 (2000).ADSCrossRefGoogle Scholar
  35. Dubinsky J., P. Chaloupka and T. Kowalski “The influence of wind fluxes on cosmic ray intensity”, Mat. Fyz. Casop., 10, 57–62 (1960).Google Scholar
  36. Gushchina R.T., L.I. Dorman, and N.S. Kaminer “Atmospherically dynamic effects in cosmic ray intensity”, Cosmic Rays (NAUKA, Moscow), 11, 78–81 (1969).Google Scholar
  37. Iucci N., G. Villoresi, L.I. Dorman, and M. Parisi “Cosmic ray survey to Antarctica and coupling functions for neutron component near solar minimum (1996–1997), 2. Meteorological effects and correction of survey data”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake City, 7, 321–324 (1999)Google Scholar
  38. Iucci N., G. Villoresi, L.I. Dorman, and M. Parisi “Cosmic ray survey to Antarctica and coupling functions for neutron component near solar minimum (1996–1997), 2, Determination of meteorological effects”, J. Geophys. Res., 105, No. A9, 21035–21046 (2000).ADSCrossRefGoogle Scholar
  39. Kawasaki, S. “On the anomalous barometric coefficient of cosmic-ray neutron monitor at Mt. Norikura”, Sci. Papers of Inst. Phys. and Chem. Res., 66, No 2, 25–32 (1972).Google Scholar
  40. Keith J. E., R. W. Peterson, R. L. Tjonaman, and J. R. Wang “Cosmic-ray neutron monitor functions, Gross transformation, and nucleonic component mean free paths”, J. Geophys. Res., 73, 353–360 (1968).ADSCrossRefGoogle Scholar
  41. Kodama M. “Geomagnetic and solar modulation effects of sea-level cosmic ray intensity. Summary of cosmic ray latitude surveys aboard the expedition ship SOYA during 1956–1962”, Japanese Antarctic Research Expedition Scientific Reports Aeronomy. Series A. No. 5 (1968).Google Scholar
  42. Lockwood J.A. and A.R. Calawa “On the barometric pressure coefficients for comic ray neutrons”, J. Atmospheric Terrest. Phys., 11, 23–31 (1957).CrossRefGoogle Scholar
  43. Lockwood, J.A., and W.R. Webber “Differential response and specific yield functions of cosmic-rays neutron monitors”, J. Geophys. Res., 72, 3395–3402 (1967).ADSCrossRefGoogle Scholar
  44. Moraal, H., M.S. Potgieter, and P.H. Stoker, and A. J. Van der Walt “Neutron monitor latitude survey of cosmic ray intensity during the 1986/1987 solar minimum”, J. Geophys. Res., 94, No. A2, 1459–1464 (1989).ADSCrossRefGoogle Scholar
  45. Nagashima, K., S. Sakakibara, and K. Kurakami “Response and yield functions of neutron monitor, galactic cosmic ray spectrum and its solar modulation, derived from all the available word-wide surveys”, Nuovo Cim. C, Serie 1, 12C, 173–209 (1989).ADSCrossRefGoogle Scholar
  46. Potgieter M.S., B.C. Raubenheimer, P.H. Stoker, and A.J. Van der Walt “Modulation of cosmic rays during solar minimum. 2. Cosmic ray latitude distribution at sea-level during 1976”, S. Africa J. Phys., 3, 77–89 (1980a).ADSGoogle Scholar
  47. Potgieter, M.S., H. Moraal, B.C. Raubenheimer, and Van der Walt “Modulation of cosmic rays during solar minimum. 3. Comparison of the latitude distributions for the periods of solar minimum during 1954, 1965, 1976”, S. Africa J. Phys., 3, 90–97 (1980b).ADSGoogle Scholar
  48. Stoker, P.H. “Cosmic ray latitude distribution at neutron monitor and aircraft altitudes”, Proc. 23th Intern. Cosmic Ray Conf., Calgary, 3, 785–788 (1993).Google Scholar
  49. Stoker, P. H. “Neutron monitor latitude surveys, response functions and 22-year modulation”, Proc. 24th Intern. Cosmic Ray Conf, Rome, 4, 1082–1085 (1995).Google Scholar
  50. Stoker, P.H., and H. Moraal “Neutron monitor latitude surveys at aircraft altitudes”, Astrophysics and Space Science, 230, 365–373 (1995).ADSCrossRefGoogle Scholar
  51. Stoker, P.H., J. Clem, J.W. Bieber and P. Evenson “Apparent” geomagnetic cutoffs and cosmic ray anomaly in the Cape Town region”, Proc. 25th Intern. Cosmic Ray Conf., Durban (South Africa), 2, 385–387 (1997).Google Scholar
  52. Tsyganenko N.A. “A magnetospheric magnetic field model with a warped tail current sheat”, Planet. Space Sci., 37, No. 1, 5–20 (1989).ADSCrossRefGoogle Scholar
  53. Uotila U.A. “Determination of the shape of the geoid”, In Proc. of Symposium: Size and Shape of the Earth, Ohio State University, Columbus, Ohio, Nov. 13–15, 1956, Inst. of Geodesy, Photogrammetry and Cartography, Publ. No. 7 (1957).Google Scholar
  54. Villoresi G., N. Iucci, M.I. Tyasto, L.I. Dorman, F. Re, F. Signoretti, N. Zangrilli, S. Cecchini, M. Parisi, C. Signorini, O.A. Danilova, and N.G. Ptitsyna “Latitude survey of the cosmic ray nucleonic component (Italy-Antarctic-Italy, 1996–1997)”, Proc 25th Intern. Cosmic Ray Conf., Durban (South Africa), 2, 421–424 (1997).Google Scholar
  55. Villoresi G., L.I. Dorman, N. Iucci, M.I. Tyasto, O.A. Danilova, and N.G. Ptitsyna “Cosmic ray survey to Antarctica and coupling functions for neutron component near solar minimum (1996–1997), 1. The latitude survey”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake City, 7, 378–381 (1999).Google Scholar
  56. Villoresi G., L.I. Dorman, N. lucci, and N.G. Ptitsyna “Cosmic ray survey to Antarctica and coupling functions for neutron component near solar minimum (1996–1997), 1, Methodology and data quality assurance”, J. Geophys. Res., 105, No. A9, 21025–21034 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Lev I. Dorman
    • 1
    • 2
  1. 1.Israel Cosmic Ray Center, Space Weather Center, and Emilio Segrè ObservatoryTel Aviv University, Israel Space Agency, and TechnionQazrinIsrael
  2. 2.Cosmic Ray Department of IZMIRANRussian Academy of ScienceTroitskRussia

Personalised recommendations