Skip to main content

Air Ionization by CR, Influence on the Ionosphere and Radio Wave Propagation

  • Chapter
  • 459 Accesses

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 303))

Abstract

The first observations of CR influence on the ionosphere and radio wave propagation were made during event of February 23, 1956 — the biggest Ground Level Event (GLE), observed in the last approximately 80 years. Let us consider some important results obtained in connection with this GLE.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams G.W. and A.J. Masley “Production rates and electron densities in the lower ionosphere due to solar cosmic rays”, J. Atmosph. Terr. Phys., 77, No 3, 289–298 (1965).

    Article  ADS  Google Scholar 

  • Ahluwalia H.S. and L.I. Dorman “Transverse cosmic ray gradients in the heliosphere and the solar diurnal anisotropy”, J. Geophys. Res., 102, No. A8, 17433–17443 (1997).

    Article  ADS  Google Scholar 

  • Bailey D.K. “Disturbances in the lower ionosphere observed at VHE following the solar flare of 23 February 1956, with particular reference to auroralzone absorption”, J. Geophys. Res., 62, 431–463 (1957).

    Article  ADS  Google Scholar 

  • Bailey D.K. “Abnormal ionization in the lower ionosphere associated with cosmic ray flux enhancements”, Proc. IRE, 47, No. 2, 255–256 (1959).

    Article  Google Scholar 

  • Bates D.R. “Recombination of small ions in the troposphere and lower stratosphere”, Planet. Space Sci., 30, No. 12, 1275–1282 (1982).

    Article  ADS  Google Scholar 

  • Bazilevskaya G.A. and A.K. Svirzhevskaya “On the stratospheric measurements of cosmic rays”, Space Sci. Rev., 85, No. 3–4, 431–521 (1998).

    Article  ADS  Google Scholar 

  • Bazilevskaya G.A., M.B. Krainev, and V.S. Makhmutov “Effects of cosmic rays on the Earth ’s environment”, J. Atmosph. Solar-Terr. Phys., 62, No. 17–18, 1577–1586 (2000).

    Article  ADS  Google Scholar 

  • Belrose J.S., M.H. Defenport, and R. Weekes “Some unusual radio observations made on 23 February 1956”, J. Atmosph. Terr. Phys., 8, No 4–5, 281–286 (1956).

    Article  Google Scholar 

  • Clem J.M. and L.I. Dorman “Neutron monitor response functions”, Space Science Rev., 93, 335–359 (2000).

    Article  ADS  Google Scholar 

  • Cooper J.F., T.G. Guzik, J.P. Wefel, K.R. Pyle, and I.G. Richardson “Polar cap intensity structure during the 22 July 1982 flare: correlation to interplanetary fluxes and anisotropies”. Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 1133–1136 (1995).

    Google Scholar 

  • Davis L.R. and K.W. Ogilvie “Rocket observations of solar protons during the November 1960 events”, J. Geophys. Res., 67, No. 5, 1711–1716 (1962)

    Article  ADS  Google Scholar 

  • Dorman L.I. “Analytical approach to the problem of the rate of ion production by cosmic rays and precipitating particles in the low-energy range”, Proc. 15th Intern. Cosmic Ray Conf., Plovdiv, 4, 411–416 (1977a).

    Google Scholar 

  • Dorman L.I. “The ionospheric coupling coefficients and the spectrographical method for studying the extraterrestrial cosmic ray variations and the changes in the geomagnetic cut-off rigidities on the basis of the data of the ionospheric and riometric observations”, Proc. 15th Intern. Cosmic Ray Conf., Plovdiv, 4, 405–410 (1977b).

    Google Scholar 

  • Dorman L.I. “Methods of cosmic ray variation research by difference ionospheric and radio-carbonic coupling coefficients”, Izvestia Academy of Sciences USSR, Series Phys., 42, No. 5, 1092–1097 (1978).

    Google Scholar 

  • Dorman L.I. “Cosmic ray long-term variation: even-odd cycle effect, role of drifts, and the onset of cycle 23”, Adv. Space Res., 27, No. 3, 601–606 (2001).

    Article  ADS  Google Scholar 

  • Dorman I.V. and Dorman L.I. “Analytical approach to direct and inverse problems in the problem of cosmic ray influence on the lower ionosphere”, Izvestia Academy of Sciences USSR, Series Phys., 37, No. 6, 1327–1331 (1973a).

    Google Scholar 

  • Dorman I.V. and Dorman L.I. “Analytical solution to the direct and inverse problems for the solar cosmic ray effect on lower ionosphere”, Proc. of 13th Intern. Cosmic Ray Conf., Denver, Vol. 2, pp. 1108–1115 (1973b).

    ADS  Google Scholar 

  • Dorman L.I., I.V. Dorman, N. Iucci, M. Parisi, and G. Villoresi “Hysteresis between solar activity and cosmic rays during cycle 22: the role of drifts, and the modulation region”, Adv. Space Res., 27, No. 3, 589–594 (2001a).

    Article  ADS  Google Scholar 

  • Dorman L.I., N. Iucci, and G. Villoresi “Time lag between cosmic rays and solar activity; solar minimum of 1994–1996 and residual modulation”, Adv. Space Res., 27, No. 3, 595–600 (2001b).

    Article  ADS  Google Scholar 

  • Dorman L.I. and I.D Kozin “Determination of the variations in the integral energy spectrum of cosmic rays on the basis of radio wave propagation data”, Proc. 15th Intern. Cosmic Ray Conf., Plovdiv, 4, 434–438 (1977).

    Google Scholar 

  • Dorman L.I. and T.M. Krupitskaya “On the possibility of determination of solar cosmic ray energy spectrum and geomagnetic cut-off rigidity by ionospheric data”, Geomagnetism and Aeronomy, 12, No. 2, 180–183 (1972).

    Google Scholar 

  • Dorman L.I. and Krupitskaya T.M., 1975. “Calculations of expected ratio of solar cosmic ray ion generation speeds on different altitudes”, Cosmic Rays (Moscow, NAUKA), Vol. 15, pp. 30–33.

    Google Scholar 

  • Dorman L.I., T.M. Krupitskaya, and M.I. Tyasto “Influence of cut-off rigidity changes on the speed of electron generation by cosmic rays in the atmosphere”, Cosmic Rays (Moscow, NAUKA), Vol. 13, 98–102 (1972).

    Google Scholar 

  • Dorman L.I., Sergeev A.V., Luzov A.A., Matyukhin Yu.G., Mamrukova V.P. and Yanchukovsky A.L. “Spectrographical method of cosmic ray intensity variations”, Izvestia Academy of Sciences of USSR, Series Phys., 32, No. 11, 1896–1903 (1968).

    Google Scholar 

  • Ellison M.A. and J.H. Reid “A longwave anomaly associated with the arrival of cosmic ray particles of solar origin on 23 February 1956”, J. Atmosph. Terr. Phys., 8, No 4–5, 290–293 (1958).

    Google Scholar 

  • Elsasser W., E.P. Nay, and J.R. Winckler “Cosmicray intensity and geomagnetism”, Nature, 178, 1226–1227 (1956).

    Article  ADS  Google Scholar 

  • Ermakov V.I., G.A. Bazilevskaya, P.E. Pokrevsky, and Yu. I. Stozhkov “Cosmic rays and ion production in the atmosphere”. Proc. 25th Intern. Cosmic Ray Conf., Durbin, 7, 317–320 (1997a).

    Google Scholar 

  • Ermakov V.I., G.A. Bazilevskaya, P.E. Pokrevsky, and Yu. I. Stozhkov “Ion balance equation in the atmosphere”, J. Geophys. Res., 102, No. D19, 23413–23419 (1997b).

    Article  ADS  Google Scholar 

  • Ermakov V.I., G.A. Kokin, A.V. Komotskov, and M.G. Sorokin “Results of measurements of the concentration of negative ions in the polar stratosphere”, Geomagnetism and Aeronomia, 32, No. 3, 47–54 (1992).

    ADS  Google Scholar 

  • Ermakov V.I. and A.V. Komotskov “Charged particle measurements in the equatorial, middle, and polar latitudes”, Proc. Central Aerological Observatory (Trudy ZAO), Moscow, Gidrometizdat, 179, 73–81 (1992).

    Google Scholar 

  • Forbush S.E. and B.F. Burke “Absorption of cosmic radio noise at 22.2 MHz following solar flare on February 23, 1956”, J. Geophys. Res., 61, No. 3, 573–575 (1956).

    Article  ADS  Google Scholar 

  • Heaps M.G. “Parametrization of the cosmic ray ionpair production rate above 18 km”, Planet. Space Sci., 26, No. 6, 513–517 (1978).

    Article  ADS  Google Scholar 

  • Heck D., J. Knapp, J.N. Capdevielle, G. Schatz, and T. Thouw “CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers”, Forschungszentrum Karlsruhe, FZKA 6019 (1998).

    Google Scholar 

  • Hensen A. and J.C.H. Van Der Hage “Parametrization of cosmic radiation at sea level”, J. Geophys. Res., 99, No. D5, 10693–10695 (1994).

    Article  ADS  Google Scholar 

  • Kallenrode M.B. and E.W. Cliver “Roggue SEP events: Observational aspects”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 8, 3314–3317 (2001a).

    ADS  Google Scholar 

  • Kallenrode M.B. and E.W. Cliver “Roggue SEP events: Modelling”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 8, 3318–3321 (2001b).

    ADS  Google Scholar 

  • Lied F. “Ionosperic absorption observed on the 23rd February 1956 at Kjeller and Tromso”, J. Atmosph. Terr. Phys., 10, No. 1, 48–48 (1957).

    Article  Google Scholar 

  • Little C.G. and H. Leinbach “Some measurements of high-latitude ionospheric absorption using extraterrestrial radio waves”, Proc. IRE, 46, 334–348 (1958).

    Article  Google Scholar 

  • Little C.G. and H. Leinbach “The riometer — a device for the continuous measurements of ionospheric absorption”, Proc. IRE, 47, 315–320 (1959).

    Article  Google Scholar 

  • Marsh N. and H. Svensmark “Solar Influence on Earth ’s Climate”, Space Sci. Rev., 107, No. 1–2, 317–325 (2003).

    Article  ADS  Google Scholar 

  • Minnes C.M., G.H. Bazzard, and H.C. Bevan “Ionospheric changes associated with the solar event of 23 February 1956”, J. Atmosph. Terr. Phys., 9. 233–234 (1957).

    Article  Google Scholar 

  • Neher H.V. “Cosmic ray knee in 1958”, J. Geophys. Res., 66, No. 12, 4007–4012 (1961).

    Article  ADS  Google Scholar 

  • Neher H.V. “Cosmic ray particles that changed from 1954 to 1965”, J. Geophys. Res., 72, No. 5, 1527–1539 (1967).

    Article  ADS  Google Scholar 

  • Neher H.V. “Cosmic rays at high latitudes and altitudes covering four solar maxima”, J. Geophys. Res., 76, No. 7, 1637–1651 (1971).

    Article  ADS  Google Scholar 

  • Pierce J.A. “VIF phase shifts associated with the disturbance of February 23, 1956”, J. Geophys. Res., 61, 475–483, 1956.

    Article  ADS  Google Scholar 

  • Porter H.S., C.H. Jackman, and A.E.S. Green “Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air”, J. Chem. Phys., 65, No. 1, 154–167 (1976).

    Article  ADS  Google Scholar 

  • Quack M., M.B. Kallenrode, König M., et al. “Ground level events and consequences for stratospheric chemistry”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 10, 4023–4026 (2001).

    ADS  Google Scholar 

  • Reid G.C. “A study of enhanced ionization produced by solar protons during a polar cap absorption event”, J. Geophys. Res., 66, No. 12, 4071–4085 (1961).

    Article  ADS  Google Scholar 

  • Rosen J.M. and D.J. Hofmann “Balloonborne measurements of electrical conductivity, mobility, and the recombination coefficient”, J. Geophys. Res., 86, No. C8, 7406–7410 (1981).

    Article  ADS  Google Scholar 

  • Shapley A.H. and R.W. Knecht “Ionospheric effect of the great solar-cosmic ray event of February 23, 1956”, Report on URSI-IRE Meeting, Washington, D.C. (1957).

    Google Scholar 

  • Usoskin I.G., K. Alanko, K. Mursula, and G.A. Kovaltsov “Heliospheric modulation strength during the neutron monitor era”, Solar Phys., 207, No. 2, 389–399 (2002a).

    Article  ADS  Google Scholar 

  • Usoskin I.G., K. Mursula, S. Solanki, M. Schüssler, and G.A. Kovaltsov “Physical reconstruction of cosmic ray intensity since 1610”, J. Geophys. Res., 107, No. A11, SS 13–1, doi:10.1029/2002JA009343 (2002b).

    Article  Google Scholar 

  • Usoskin I.G., O.G. Gladysheva, and G.A. Kovaltsov “Cosmic ray induced ionization in the atmosphere: spatial and temporal changes”, J. Atmosph. Solar-Terr. Phys., in press (2004).

    Google Scholar 

  • Yu, F. “Altitude variations of cosmic ray induced production of aerosols: Implications for global cloudiness and climate”, J. Geophys. Res., 107, No. A7, SIA 8-1, doi:10.1029/2001JA000248 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dorman, L.I. (2004). Air Ionization by CR, Influence on the Ionosphere and Radio Wave Propagation. In: Cosmic Rays in the Earth’s Atmosphere and Underground. Astrophysics and Space Science Library, vol 303. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2113-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2113-8_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-6987-3

  • Online ISBN: 978-1-4020-2113-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics