Skip to main content

Cosmic Ray Influence on Atmospheric Electric Field and Thunderstorms, Earth’s Global Charge and Global Electric Current

  • Chapter
Cosmic Rays in the Earth’s Atmosphere and Underground

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 303))

  • 460 Accesses

Abstract

In Chapter 8 we considered the problem of the influence of atmospheric electric field on cosmic rays. But there is also another very important and interesting inverse problem: is there or is there not some influence of cosmic rays on thunderstorms and the atmospheric electric field? We mentioned this problem very briefly in Section 8.1. The first to suggest that secondary cosmic ray electrons can be influenced by the strong cloud electric fields was Wilson (1916, 1925a,b). In the last decade this problem was developed very intensively by A.V. Gurevich and colleagues (see Gurevich et al., 1992, 1999, 2001; Gurevich and Milikh, 1999; Gurevich and Zybin, 2001). They showed that the secondary CR relativistic electrons in the atmospheric electric field create runaway electron avalanches, which can be main cause of thunderstorm discharges (see Sections 11.2 and 11.3). On the other hand, Ermakov (1992), Ermakov and Stozhkov (2002, 2003) also connected thunderstorms discharges with CR, but they assumed that the main cause is EAS (External Atmospheric Showers) generated by primary CR with energy ≥ 1014 eV (see Section 11. 4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amatuni A.Z., E.A Mamidzshanjan, S.G. Matinjan, S.I. Nikolsky, E.I. Tukish, and E.L. Feinberg “Project ANI and the perspective of the experimental study of super high energy particle interactions”, In the book Problems of Comic Ray Physics, Nauka, Moscow, 251–266 (1987).

    Google Scholar 

  • Babich L.P., T.V. Loiko, and V.A. Tsukerman “High — voltage nanosecond discharge in a dense gas at a high overvoltage with runaway electrons”, UFN, 160, No. 7, 49–82 (1990).

    Article  Google Scholar 

  • Baker M.B. and J.G. Dash “Mechanism of charge transfer between colliding ice particles in thunderstorms”, J. Geophys. Res., 99, 10621–10626(1994).

    Article  ADS  Google Scholar 

  • Bazilevskaya G.A. and A.K. Svirzhevskaya “On the stratospheric measurements of cosmic rays”, Space Sci. Rev., 85, No.3–4, 431–521 (1988).

    Article  ADS  Google Scholar 

  • Beasley W., M.A. Uman, and P.L. Jr. Ruslen “Electric field, preceding cloud to ground lightning flashes”, J. Geophys. Res., 87, No. C7, 4883–4902 (1982).

    Article  ADS  Google Scholar 

  • Beasley W.H., K.B. Eack, H.E. Morris, W.D. Rust, and D.R. Macgorman “Electric field changes of lightning observed in thunderstorms”, Geophys. Res. Lett., 27, No. 2, 189–192 (2000).

    Article  ADS  Google Scholar 

  • Christian H.J., R.J. Blakeslee, D.J. Bossipio et al. “Global frequency and distribution of lightning as observed by the optical transient detector”, Proc. 11th Intern. Conf on Atmospheric Electricity, Alabama, USA, 726–729 (1999).

    Google Scholar 

  • Chubenko A.P., V.P. Antonova, S.Yu. Kryukov, V.V. Piskal, M.O. Ptitsyn, A.L. Shepetov, L.I. Vildanova, K.P. Zybin, and A.V. Gurevich “Intensive X-ray emission bursts during thunderstorms”, Physics Letters, A275, 90–100 (2000).

    Article  Google Scholar 

  • Daniel R.R. and S.A. Stephens “Cosmic ray produced electrons and gamma rays in the atmosphere”, Rev. Geophys. Space Sci., 12, No. 2, 233–258 (1974).

    Article  ADS  Google Scholar 

  • Eack K.B. “Balloon-borne X-ray spectrometer for detection of X rays produced by thunderstorms”, Rev. Sci. Instrum. 67, 2005–2009 (1996).

    Article  ADS  Google Scholar 

  • Eack K.B., W.H. Beasley, W.D. Rust, T.C. Marshall, and M. Stolzenburg “Initial results from simultaneous observation of X rays and electric fields in a thunderstorm”, J. Geophys. Res., 101, 29637–29640 (1996a).

    Article  ADS  Google Scholar 

  • Eack K.B., W.H. Beasley, W.D. Rust, T.C. Marshall, and M. Stolzenburg . “X ray pulses observed above a mesoscale convective system”, Geophys. Res. Lett., 23, No.21, 2915–2918 (1996b).

    Article  ADS  Google Scholar 

  • Eack K.B., D.M. Suszynsky, W.H. Beasley, R. Roussel-Dupre, E. Symbalisty, “Gammaray emissions observed in a thunderstorm anvil”, Geophys. Res. Lett., 27, No. 2, 185–188 (2000).

    Article  ADS  Google Scholar 

  • Ermakov V.I. “Lightning iniciation by galactic cosmic rays”, Proc. 9th Intern. Conf Atmo.sper. Electr., St. Petersburg, 2, 485–488 (1992).

    Google Scholar 

  • Ermakov V.I., G.A. Bazilevskaya, P.E. Pokrevsky, and Y.I. Stozhkov. “Ion balance equation in the atmosphere”, J. Geophys. Res. D., 102, No. 19, 23413–23419 (1997).

    Article  ADS  Google Scholar 

  • Ermakov V.I. and Y.I. Stozhkov “New mechanism of thundercloud and lightning production”, Proc. 11th Intern. Conf. Atmosper. Electr., Alabama, USA, 242–245 (1999).

    Google Scholar 

  • Ermakov V.I. and Y.I. Stozhkov “Mechanism of thundercloud electricity production”, Preprint FIAN, No. 25, pp. 28 (2002)

    Google Scholar 

  • Ermakov V.I. and Y.I. Stozhkov “Cosmic rays in the mechanism of thundercloud production”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 7, 4157–4160 (2003).

    Google Scholar 

  • Fulks J. and P. Meyer “Cosmic ray electrons in the atmosphere”, J. Geophys., 40. 751–759(1974).

    Google Scholar 

  • Fullekrug M. “Global lightning triangulation”, Proc. I1 th Intern. Conf. on Atmospheric Electricity, Alabama, USA, 709–711 (1999).

    Google Scholar 

  • Gish O.H. and G.R. Wait. “Thunderstorms and Earth ’s General Electrification”, J. Geophys. Res., 55, No. 4, 473–484 (1950).

    Article  ADS  Google Scholar 

  • Gurevich A.V. “On the number of accelerated particles in the ionized gas at different acceleration mechanisms”, JETP, 38, No. 5, 1597–1607 (1960).

    Google Scholar 

  • Gurevich A.V., H.C. Carlson, Yu.V. Medvedev, and K.P. Zybin. “Kinetic theory of runaway breakdown in inhomogeneous and thundercloud electric field”, Physics Letters, A282. 180–185 (2001).

    Article  Google Scholar 

  • Gurevich A.V. and G.M. Milikh. “Generation of X-rays due to multiple runaway breackdown inside thunderclouds”, Physics Letters, A262, 457–463 (1999).

    Article  Google Scholar 

  • Gurevich A.V. and K.P. Zybin. “Runaway breakdown and electric discharges in thunderstorms”, UFN, 171, No. 11, 1177–1199 (2001).

    Article  MathSciNet  Google Scholar 

  • Gurevich A.V., K.P. Zybin, and R. Russel-Dupre “Runaway electron mechanism of air breakdown and preconditioning during thunderstorms”. Physics Letters. A165, 463–468 (1997)

    Google Scholar 

  • Gurevich A.V., K.P. Zybin, and R.A. Russel-Dupre “Lightning initiation by simultaneous effect of runaway breakdown and cosmic ray showers”, Physics Letters. A254. 79–87 (1999).

    Article  Google Scholar 

  • McCarthy M. and G.K. Parks. “Further observations of X-rays inside thunderstorms”, Geophys. Res. Lett., 12, No.6, 393–396 (1985)

    Article  ADS  Google Scholar 

  • Marshall T., M. McCarthy and W. Rust. “Electric field magnitudes and lightning initiation in thunderstorms”, J. Geophys. Res., 100, 7097–7104 (1996a).

    Article  ADS  Google Scholar 

  • Marshall T., W. Rust and H. Stolzenberg “Electrical structure and updraft speeds in thunderstorms over the southern Great Plains”.J. Geonhvs. Res., 10, 1001–1016 (1996b)

    Google Scholar 

  • Orville R.E. and G.R. Huffines “Lightning ground flash measurements over contiguous United States: a ten year summary 1989–1998”, Proc. 11th Int. Conf. Atmosph. Electr., Alabama, 412 (1999).

    Google Scholar 

  • Orville R.E. and G.R. Iluffines. “Lightning ground flash measurements over contiguous United States: 1995–97”, Mon. Weather Rev., 127, 2693–2703 (1999).

    Article  ADS  Google Scholar 

  • Orville R.E. and G.R. Huffines. “Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989–1998”, Mon. Weather Rev., 129, 1179–1193 (2001).

    Article  ADS  Google Scholar 

  • Roble R.G. “On solar terrestrial relationships in the atmospheric electricity”, J. Geophys. Res., D90, No. 4, 6000–6012 (1985).

    Article  ADS  Google Scholar 

  • Rodger C.J. “Red sprites, upward lightning, and VLF perturbations”, Rev. Geophysics, 37, No. 3, 317–336 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  • Rusanov A.I. and V.L. Kuzmin. “Electric field influence on the surface tension of polar liquid”, Kolloicny Journal, 39, No. 2, 388–390 (1977).

    Google Scholar 

  • Sentman D.D. and E.M. Wescott “Red sprites and blue jets: high altitude optical emissions linked to lightning”, EOS, 77, No. 1, 1–24 (1982).

    Article  ADS  Google Scholar 

  • Stergis C.G., G.C. Rein, and T. Kangas “Electric field measurements above thunderstorms”, J. Atmo.sph. and Terr. Phys., 11, 83–90 (1957).

    Article  Google Scholar 

  • Stozhkov Yu. I. “The role of cosmic rays in atmospheric processes”, J. Phys. G: Noel. Part. Phys., 28, 1–11 (2002).

    Google Scholar 

  • Stozhkov Yu. I., V.I. Ermakov, and P.E. Pokrevsky “Cosmic rays and atmospheric processes”, I vestia Academy of Sci. Ser. Phys., 65, No. 3, 406–410 (2001).

    Google Scholar 

  • Suszynsky D.M., R. Roussel-Dupre, and G. Shaw “Ground based search for X rays generated by thunderstorms and lightning”, J. Geophys. Res., 101, 23505–23516 (1996).

    Article  ADS  Google Scholar 

  • Uman M.A. “Natural and artificially lightning and test standards”, Proceedings of the IEEE, 76, No. 12, 5–26 (1988).

    Google Scholar 

  • Vaughan O.H. and B. Vonnegut “Recent observations of lightning discharges from the top of a thundercloud into the clear air above”, J. Geophys. Res., 94, No. D11, 13179–13182 (1989).

    Article  ADS  Google Scholar 

  • Wilson C.T. “The acceleration of ß—particles in strong electric fields such as those of thunderclouds”, Proc. Cambridge Phil. Soc., 22, 534–538 (1925a).

    Article  ADS  Google Scholar 

  • Wilson C.T.R. “The Electric Field of a Thundercloud and Some of its Effects”, Proc. Roy. Soc., London, 37, 32D (1925b).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dorman, L.I. (2004). Cosmic Ray Influence on Atmospheric Electric Field and Thunderstorms, Earth’s Global Charge and Global Electric Current. In: Cosmic Rays in the Earth’s Atmosphere and Underground. Astrophysics and Space Science Library, vol 303. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2113-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2113-8_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-6987-3

  • Online ISBN: 978-1-4020-2113-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics