Skip to main content

Computational Study of the Mechanical Properties of Alumina — Copper Interfaces: Ab Initio Calculations and Combination with Mesoscopic Simulations

  • Conference paper
  • 586 Accesses

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 115))

Abstract

Adhesive and mechanical properties of the Al2O3(0001)/Cu interface have been examined by using the ab initio calculations based on the density-functional theory, and the development of interfacial interatomic potentials has been discussed. Stable configurations for the Al-terminated and O-terminated interfaces have been examined. The O-terminated interface has quite larger adhesive energy. The rigid-type ab initio tensile test has been applied to the 0-terminated interface. The Cu-O interface is twice as strong as the Cu-Cu interlayer. The effective interatomic potentials have been constructed by converting the interlayer potential curves in the tensile test into the contribution of each atomic pair.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.W. Finnis, J. Phys. Condens. Matter 8, 5811 (1996).

    Article  Google Scholar 

  2. J.R. Smith, T. Hong and D.J. Srolovitz, Phys. Rev. Lett. 72, 4021 (1994);

    Article  Google Scholar 

  3. T. Hong, J.R. Smith and D.J. Srolovitz, J. Adhesion Sci. Tech. 8, 837 (1994).

    Article  Google Scholar 

  4. R. Benedek, M. Minkoff and L.H. Yang, Phys. Rev. B 54, 7697 (1995).

    Article  Google Scholar 

  5. J. Hoekstra and M. Kohyama, Phys. Rev. B 57, 2334 (1998); M. Kohyama and J. Hoekstra, ibid. 61, 2672 (2000); S. Tanaka and M. Kohyama, ibid. 64, 235308 (2001).

    Article  Google Scholar 

  6. I.G. Batyrev, A. Alavi, M.W. Finnis and T. Deutsch, Phys. Rev. Lett. 82, 1510 (1999);

    Article  Google Scholar 

  7. I.G. Batyrev and L. Kleinman, Phys. Rev. B 64, 033410 (2000).

    Article  Google Scholar 

  8. W. Zhang and J.R. Smith, Phys. Rev. B 61, 16883 (2000);

    Article  Google Scholar 

  9. W. Zhang and J.R. Smith,Phys. Rev. Lett. 85, 3225 (2000);

    Article  Google Scholar 

  10. J.R. Smith and W. Zhang, Acta Mater. 48, 4395 (2000).

    Article  Google Scholar 

  11. W. Zhang, J.R. Smith and A.G. Evans, Acta Mater. 50, 3803 (2002).

    Article  Google Scholar 

  12. R. Benedek, D.N. Seidman, M. Minkoff, L.H. Yang and A. Alavi, Phys. Rev. B 60, 16094 (1999) .

    Article  Google Scholar 

  13. K. Albe, R. Benedek, D.N. Seidman and R.S. Averback, Mat. Res. Soc. Symp. Proc. 654, AA4.3.1 (2001) .

    Google Scholar 

  14. C.X. Guo, D.E. Ellis, V.P. Dravid and L. Brewer, Mat. Res. Soc. Symp. Proc. 654, AA4.5.1 (2001) .

    Google Scholar 

  15. J.R. Chelikowsky and M.L. Cohen, Handbook on Semiconductors Vol.1, edited by P.T. Landsberg (Elsevier, 1992), p.59.

    Google Scholar 

  16. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964); W. Kohn and J.L. Sham, ibid. 140, A1133 (1965).

    Article  MathSciNet  Google Scholar 

  17. J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  Google Scholar 

  18. N. Troullier and J.L. Martins, Phys. Rev. B 43, 1993 (1991).

    Article  Google Scholar 

  19. P. Pulay, Chem. Phys. Lett. 73, 393 (1980);

    Article  Google Scholar 

  20. G. Kresse and J. Fürthmüller, Phys. Rev. B 54, 11169 (1996) .

    Article  Google Scholar 

  21. M. Kohyama, S. Tanaka and K. Okazaki, J. Soc. Mater. Sci. Jpn. 52, 260 (2003) .

    Article  Google Scholar 

  22. G.P. Kerker, Phys. Rev. B 23, 3082 (1981).

    Article  Google Scholar 

  23. P. Pulay, J. Comp. Chem. 3, 556 (1982).

    Article  Google Scholar 

  24. S. Tanaka, R. Yang and M. Kohyama, to be submitted.

    Google Scholar 

  25. P.W. Tasker and A.M. Stoneham, J. Chimie Phys. 84, 149 (1987).

    Google Scholar 

  26. R. Yang, S. Tanaka and M. Kohyama, to be submitted.

    Google Scholar 

  27. T. Sasaki, K. Matsunaga, H. Ohta, H. Hosono, T. Yamamoto and Y. Ikuhara, J. Soc. Mater. Sci. Jpn. 52, 555 (2003) .

    Article  Google Scholar 

  28. M. Kohyama, Phil. Mag. Lett. 79, 659 (1999);

    Article  Google Scholar 

  29. M. Kohyama, Phys. Rev. B 65, 184107 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Tanaka, S., Yang, R., Kohyama, M. (2004). Computational Study of the Mechanical Properties of Alumina — Copper Interfaces: Ab Initio Calculations and Combination with Mesoscopic Simulations. In: Kitagawa, H., Shibutani, Y. (eds) IUTAM Symposium on Mesoscopic Dynamics of Fracture Process and Materials Strength. Solid Mechanics and its Applications, vol 115. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2111-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2111-4_40

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6576-6

  • Online ISBN: 978-1-4020-2111-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics