Skip to main content

From Phase Identification to Structure Solution: X-Ray Crystallography at High Pressures

A practical approach applied to angular-dispersive data collected from large-volume samples

  • Conference paper

Part of the book series: NATO Science Series ((NAII,volume 140))

Abstract

In this Chapter we give an overview of the use of modern powder diffraction techniques that are applied to real data collected with in angular-dispersive geometry at a state-ofthe-art synchrotron beamline, using large-volume apparatus to generate high-pressure and temperature conditions. The general theme is to obtain as much information as possible from the data, and we touch, without going into excessive detail, all steps that could be involved in any study undertaken at a beamline similar to ID30 at the ESRF. The techniques described here provide the basic grounding for all in situ investigations that couple this diffracting geometry with large-volume samples. The various stages of data collection and analysis are shown with examples, using, as far as possible, those programs that are freely available.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., Haüsermann, D. (1996) Two-dimensional detector systems: From real detector to idealised image of two-theta scan. High Pressure Research, 14, 235–248

    Article  ADS  Google Scholar 

  2. Crichton, W. A., Parise, J. B., Breger, J., Müller, H., Hanson, T. (2003) Hydrothermal synthesis, powder structure determination and equation of state of MgOHF (in preparation)

    Google Scholar 

  3. The POWDER DIFFRACTION FILE (PDF-2, PDF-4) databases are property of the International Center for Diffraction Data, http://www.icdd.com

  4. Cheary, R. W., Coelho, A. A. (1996). XFIT deposited, with tutorials at http://www.ccp14.ac.uk/tutorial/xfit95/xfit.htm

    Google Scholar 

  5. Dragoe, N (1999) POWDER V2.00 written by N. Dragoe, version E: 1999–03-03, http://www.ccpl4.ac.uk

    Google Scholar 

  6. Crichton, W. A., Vaughan, G. M. B., Mezouar, M. (2001) In situ structure solution of helical sulphur at 3 GPa and 400°C. Zeischrift für Kristallographie, 216, 417- 419

    Article  ADS  Google Scholar 

  7. Finger, L. W., Cox, D. E., Jephcoat, A. P. (1994) A correction for powder diffraction peak asymmetry due to axial divergence. Journal ofApplied Crystallography, 27, 892–900

    Article  Google Scholar 

  8. Shirley, R. (2000) “The CRYSFIRE system for automatic powder indexing: user’s manual” The Lattice Press, 41 Guilford Park Avenue, Guilford, Surrey, England.

    Google Scholar 

  9. Visser, J. W. (1969) A fully automatic program for finding the unit cell from powder data. Journal of Applied Crystallography, 2, 89–95

    Article  Google Scholar 

  10. Taupin, D. (1973) A powder-diagram automatic-indexing program. Journal of Applied Crystallography, 6, 380–385

    Article  Google Scholar 

  11. Boultif, A. and D. Loüer (1991) Indexing of powder diffraction patterns for low symmetry lattices by the successive dichotomy method. Journal ofApplied Crystallography, 24, 987–993

    Article  Google Scholar 

  12. CHECKCELL and CELREF part of the suite of programs written at the Laboratoire des Materiaux et du Genie Physique de l’Ecole Supérieure de Physique de Grenoble by Jean Laugier and Bernard Bochu. Full tutorials available at http://www.ccpl4.ac.uk

  13. Wolff, P. M. de (1972) The definition of the indexing figure of merit M(20). Journal of Applied Crystallography, 5, 243 - 245

    Article  Google Scholar 

  14. POWDERCELL, written by W. Kraus and G. Nolze of the Federal Institute for Materials Research and Testing (BAM), Berlin, version 2.3 1999

    Google Scholar 

  15. ERACEL, written by A. Le Bail. Archived at http://www.cristal.org/ftp/eracel.zip

  16. Holland, T. J. B., Redfern, S. A. T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 65–77

    Article  Google Scholar 

  17. Hahn, T. (1996) Editor, “The international tables for crystallography” Volume 3. 4th Edn Kluwer Academic, Dordrecht.

    Google Scholar 

  18. Le Bail, A. Duroy, H. Duroy, Fourquet, J. L. (1988) Ab-initio structure determination of LiSbW06 by x-ray powder diffraction. Materials Research Bulletin, 23, 447–452

    Article  Google Scholar 

  19. Larson, B., Von Dreele, A. C. (1994) “General Structure Analysis System (GSAS)” Los Alamos National Laboratory Report LAUR 86–748

    Google Scholar 

  20. RIETICA, written by B. A. Hunter, current version 1.7.7; references to IUCR Powder Diffraction, 22, 21 (1997) and Le Bail ibid. available from http://www.ansto.gov.au/ansto/neut/s_hun.html

  21. Toby, B. H. (2001) ExPGUI, a graphical user interface for GSAS. Journal ofApplied Crystallography, 34, 210–213

    Article  Google Scholar 

  22. Altomare, A., Burla, M. C., Carnalli, M., Carrozzini, B., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polodori, G., Rizzi, R. (2003) EXPO and SIR97 release 1.01, available from http://www.irmec.ba.cnr.it

    Google Scholar 

  23. Putz, H., Schön, J. C., Jansen, M. (1999) Combined method for ab initio structure solution from powder diffraction data. Journal ofApplied Crystallography, 32, 864- 870

    Article  Google Scholar 

  24. Le Bail, A. (2001) EsPOIR: A program for solving crystal structures by Monte Carlo analysis of powder diffraction data. Materials Science Forum, 378, 47–52

    Article  Google Scholar 

  25. Favre-Nicolin, N., Cerny, R. (2002) Fox, ‘free objects for crystallography’: a modular approach to ab initio structure determination from powder diffraction. Journal ofApplied Crystallography, 35, 734–743

    Article  Google Scholar 

  26. Hannemann, A., Hundt, R., Schön, J. C., Jansen, M. (1998) A new algorithm for space-group determination. Journal ofApplied Crystallography, 31, 922–928

    Article  Google Scholar 

  27. Hundt, R., Schön, J. C., Hannemann, A., Jansen, M. (1999) Determination of symmetries and idealized cell parameters for simulated structures. Journal ofApplied Crystallography, 32, 413–416

    Article  Google Scholar 

  28. OVFRLAP, written by A. Le Bail. Available at http:/www.cristal.org

  29. Crichton, W. A., Mezouar, M., Monaco G., Falconi, S. (2003) Phosphorus: New in situ powder data from large-volume apparatus. Powder Diffraction, 18, 155–158

    Article  ADS  Google Scholar 

  30. Grzechnik, A., Crichton, W. A., Syassen, K., Adler, P., Mezouar, M. (2001) A new polymorph of ZrW2O8 synthesized at high pressures and temperatures. Chemistry of Materials, 14, 4255–4259

    Article  Google Scholar 

  31. ICSD database, property of FIZ-Karlsruhe, http://www.fiz-karlsruhe.de

  32. Ackermann, R. J., Chang, A. T., Sorrell, C. A. (1977) Thermal expansion and phase transition of the U3O8-Z phase in air. Journal of Inorganic and Nuclear Chemistry, 39, 75–85

    Article  Google Scholar 

  33. Young, R. A. (1993) Editor “The Rietveld method”, Oxford University Press.

    Google Scholar 

  34. McClusker R., Von Dreele, R. B., Cox, D. E., Loüer, D., Scardi, P. (1999) Rietveld Refinement Guidelines. Journal ofApplied Crystallography, 32, 36–50

    Article  Google Scholar 

  35. ATOMS, version 5.0.4, written by E. Dowty (1999). Commercial software, betas are available for download at http://www.shapesoftware.com

  36. Burnett, M. N., Johnson C. K.(1996) “ORTEP-III: Oak Ridge Thermal Ellipsoid Plot program for crystal structure illustrations”. Oak Ridge National Laboratory Report ORNL-6895

    Book  Google Scholar 

  37. Hall, S. R, Allen, F. H., Brown, I. D. (1991) The Crystallographic Information File (CIF): A new standard archive file for crystallography. Acta Crystallographica, A47, 655–685.

    Google Scholar 

  38. Spek, A. L. (2003) PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Crichton, W.A., Mezouar, M. (2004). From Phase Identification to Structure Solution: X-Ray Crystallography at High Pressures. In: Katrusiak, A., McMillan, P. (eds) High-Pressure Crystallography. NATO Science Series, vol 140. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2102-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2102-2_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1954-8

  • Online ISBN: 978-1-4020-2102-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics