An Introduction to Diamond Anvil Cells and Loading Techniques

  • E. Soignard
  • P. F. McMillan
Conference paper
Part of the NATO Science Series book series (NAII, volume 140)

Abstract

The development of the diamond anvil cell has led to studies of condensed matter under static high pressure conditions extending into the multi-megabar range, under simultaneous very high- or ultra low-temperature conditions, with implications for fields ranging from Earth and planetary science, to solid state physics and chemistry, and materials science [1–25]. The combination of such high pressure techniques with structure determination of solids (and liquids) via the methods of crystallography is the topic of this course. The various Chapters in this volume describe basic to advanced techniques for high pressure crystallography and data analysis, along with complementary experimental and theoretical methods for structural studies, presented by experts in the various fields. One of the goals of the course was also to encourage students or established researchers with interests in other areas of crystallography to incorporate diamond cell techniques into their research programme. For such “new users”, it was felt useful to provide the present Chapter, that describes some of the basic principles of the diamond anvil cell and a brief introduction to its operation. For those that wish to explore and develop the methods further, we recommend that readers consult the many excellent review articles and books that have been published on the subject, including useful accounts of the history of the instrument [1–6].

Keywords

Dust Zirconia Carbide Sodium Chloride Epoxy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Piermarini, G. J. (2001) High pressure X-ray crystallography with the diamond cell at NIST/NBS, J. Res. Natl. Inst. Stand. Technol. 106, 889–920.CrossRefGoogle Scholar
  2. 2.
    Eremets, M. I. (1997) High Pressure Experimental Methods, Oxford University Press, Oxford, U.K.Google Scholar
  3. 3.
    Ferraro, J. R. (1984) Vibrational Spectroscopy at High External Pressures, Academic Press, Inc, New York.Google Scholar
  4. 4.
    Hazen, R. M. and Finger, L. W. (1982) Comparative Crystal Chemistry: Temperature, Pressure, Composition, and the Variation of Crystal Structure, John Willey & Sons, New York.Google Scholar
  5. 5.
    Holzapfel, W. B. and Isaacs, N. S. (1997) High-Pressure Techniques in Chemistry and physics, Analytical Approch in Chemistry, Oxford University Press, New York.Google Scholar
  6. 6.
    Hemley, R. J. and Mao, H. K. (2002) New windows on earth and planetary interiors, Mineral. Mag. 66, 791–811.CrossRefGoogle Scholar
  7. 7.
    Hemley, R. J., Chiarotti, G. L., Bernasconi, M. and Ulvi, L. (2002) High Pressure Phenomena, Proc. Int. School Phys. “Enrico Fermi”, Course CXLVII, IOS Press, Amsterdam.Google Scholar
  8. 8.
    Weir, C. E., Lippincott, E. R, Van Valkenburg, A. and Bunting, E. N. (1959) Infrared Studies in the 1- to 15 Micron Region to 30,000 Atmospheres, J. Res. Natl. Inst. Stand. 63 A, 55.Google Scholar
  9. 9.
    Jamieson, J. C., Lawson, A. W. and Nachtrieb, N. D. (1959) New Device for obtaining X-Ray Diffraction Patterns from Substances Exposed to High Pressure, Rev. Sci. Instrum. 30, 1016.ADSCrossRefGoogle Scholar
  10. 10.
    Van Valkenburg, A. (1962) Visual Observation of High Pressure Transitions, Rev. Sci. Instrum. 33, 1462.Google Scholar
  11. 11.
    Jayaraman, A. (1983) Diamond-anvil cell and high-pressure physical investigations., Rev. Mod. Phys. 55, 55–108.ADSCrossRefGoogle Scholar
  12. 12.
    Liu, L.-G. and Bassett, W. A. (1986) Elements, Oxides, Silicates: High-Pressure Phases with implications for the Earth’s Interior, Oxford University Press, New York.Google Scholar
  13. 13.
    Bell, P. M., Mao, H. K. and Goettel, K. (1984) Ultrahigh pressure: beyond 2 megabars and the ruby fluorescence scale, Science 226, 542–544.ADSCrossRefGoogle Scholar
  14. 14.
    Xu, J., Bell, P. M. and Mao, H. K. (1986) High pressure ruby and diamond fluorescence: Observations at 0.21 to 0.55 terapascal., Science 232, 1404–1406.ADSCrossRefGoogle Scholar
  15. 15.
    Jeanloz, R. (1989) Physical chemistry at ultrahigh pressures and temperatures, Ann. Rev. Phys. Chem. 40, 237–259.ADSCrossRefGoogle Scholar
  16. 16.
    Hemley, R. J., Bell, P. M. and Mao, H. K. (1987) Laser techniques in high-pressure geophysics, Science 237, 605–612.ADSCrossRefGoogle Scholar
  17. 17.
    Hazen, R. M. (1993) The New Alchemists, Times Books, Random House, New York.Google Scholar
  18. 18.
    Mao, H. K. and Hemley, R. J. (1900) Experimental Studies of Earth’s Deep Interior: Accuracy and Versatility of Diamond-Anvil Cells, Phil. Trans. R. Soc. Lond. A 354, 1315–1332.ADSGoogle Scholar
  19. 19.
    Boehler, R. (1996) Melting of mantle and core materials at very high pressures, Phil. Trans. R. Soc. Lond. A 354, 1265–1278.ADSCrossRefGoogle Scholar
  20. 20.
    Hemley, R. J. and Ashcroft, N. W. (1998) The revealing role of pressure in the condensed matter sciences, Phys. Today 51, 26–32.CrossRefGoogle Scholar
  21. 21.
    Hemley, R. J. and Mao, H. K. (1997),Encyclopaedia ofApplied Physics (G. L. Trigg), pp.555–572, VCH Publishers, Inc., New York.Google Scholar
  22. 22.
    Hemley, R. J. (1998) Ultrahigh-Pressure Mineralogy: Physics and Chemistry of the Earth’s Deep Interior, Rev. Mineral., 37, Mineral Society of America, Washington D.C.Google Scholar
  23. 23.
    McMillan, P. F. (2002) New materials from high pressure experiments, Nature Materials 1, 19–25.ADSCrossRefGoogle Scholar
  24. 24.
    McMillan, P. F. (2003) Chemistry of materials under extreme high pressure-high temperature conditions, Chem. Comm. 919–923.Google Scholar
  25. 25.
    Bridgman, P. W. (1958) The Physics ofHigh Pressure, G. Bell & Sons, London.Google Scholar
  26. 26.
    Bridgman, P. W. (1935) Effects of High Shearing Stress Combines with Hydrostatic Pressure, Phys. Rev. 48, 825–847.ADSCrossRefGoogle Scholar
  27. 27.
    Bridgman, P. W. (1952) The resistance of 72 elements, alloys, and compounds to 100,000 kg/cm`, Proc. Am. Acad. Arts Sci. 81, 167–251.CrossRefGoogle Scholar
  28. 28.
    Dunstan, D. J., Van Uden, N. W. A. and Ackland, G. J. (2002) High pressure instrumentation: Low and negative pressures, High Pressure Res. 22, 773–778.ADSCrossRefGoogle Scholar
  29. 29.
    van Uden, N. W. A. and Dunstan, D. J. (2002),High Pressure Effects in Chemistry, Biology and Materials Science, A standard diamond-anvil cell adaptedfor work on biological molecules and soft solids pp.299–302,Google Scholar
  30. 30.
    Bassett, W. A., Anderson, A. J., Mayanovic, R. A. and Chou, I. M. (2000) Modified hydrothermal diamond anvil cells for XAFS analyses of elements with low energy absorption edges in aqueous solutions at sub- and supercritical conditions, Z. Kristall. 215, 711–717.CrossRefGoogle Scholar
  31. 31.
    Mao, W. L., Mao, H. K., Eng, P. J., Trainor, T. P., Newville, M., Kao, C. C., Heinz, D. L., Shu, J., Meng, Y. and Hemley, R. J. (2003) Bonding Changes in Compressed Superhard Graphite, unpublished Google Scholar
  32. 32.
    Yan, C-S., Vohra, Y. K., Mao, H. K. and Hemley, R. J. (2003) Very high growth rate chemical vapor deposition of single-crystal diamond, Proc. Nat. Acad. Sci. USA 99, 12523–12526.ADSCrossRefGoogle Scholar
  33. 33.
    Velisavljevic, N., Chesnut, G. N., Vohra, Y. K., Weir, S. T., Malba, V. and Akella, J. (2002) Structural and electrical properties of beryllium metal at 66 GPa studied using deigner diamond anvils, Phys. Rev. B 65, 172107–172200.ADSCrossRefGoogle Scholar
  34. 34.
    Jackson, D. D., Aracne-Ruddle, C., Malba, V., Weir, S. T., Catledge, S. A. and Vohra, Y. K. (2003) Magnetic susceptibility measurements at high pressure using designer diamond anvils, Rev. Sci. Instrum. 74, 2467–2471.ADSCrossRefGoogle Scholar
  35. 35.
    Young, D. A., Zha, C. S., Boehler, R., Yen, J., Nicol, M., Zinn, A. S., Schiferl, D., Kinkead, S., Hanson, R C. and Pinnick, D. A. (1987) Diatomic Melting Curves to Very High-Pressure, Phys. Rev. B 35, 5353–5356.ADSCrossRefGoogle Scholar
  36. 36.
    Marzke, R. F., Raffaelle, D. P., Halvorson, K. E. and Wolf, G. H. (1994) A H-1-Nmr Study of Glycerol at High-Pressure, J. Non-Cryst. Solids 172, 401–407.ADSCrossRefGoogle Scholar
  37. 37.
    Le Toullec, R., Pinceaux, J. P. and Loubeyre, P. (1988) The membrane diamond anvil cell: a new device for generating continuous pressure and temperature variations, High Pressure Res. 1, 77.ADSCrossRefGoogle Scholar
  38. 38.
    Chervin, J. C., Canny, B., Besson, J. M. and Pruzan, P. (1995) A diamond anvil cell for IR microspectroscopy, Rev. Sci. Instrum. 66, 2595–2598.ADSCrossRefGoogle Scholar
  39. 39.
    Anderson, A. J., Jayanetti, S., Mayanovic, R. A., Bassett, W. A. and Chou, I. M. (2002) X-ray spectroscopic investigations of fluids in the hydrothermal diamond anvil cell: The hydration structure of aqueous La3+ up to 300 degrees C and 1600 bars, Am. Min.87, 262–268.Google Scholar
  40. 40.
    Mao, W. L., Mao, H. K., Goncharov, A. F., Struzhkin, V. V., Guo, Q. Z., Hu, J. Z., Shu, J. F., Hemmley, R. J., Somayazulu, M. and Zhao, Y. S. (2002) Hydrogen clusters in clathrate hydrate, Science 297, 2247–2249.ADSCrossRefGoogle Scholar
  41. 41.
    Sharma, A., Scott, J. H., Cody, G. D., Fogel, M. L., Hazen, R. M., Hemley, R. J. and Huntress, W. T. (2002) Microbial Activity at Gigapascal Pressures, Science 295, 1514–1516.ADSCrossRefGoogle Scholar
  42. 42.
    Manghani, M. H., Ming, L. C. and Jamieson, J. C. (1980) Prospects of using synchrotron ratiation facilities with diamond-anvil cells: high-pressure research applications in geophysics., Nucl. Instr. Meth. 177, 219–226.CrossRefGoogle Scholar
  43. 43.
    Finger, L. W. (1989),Modern Power Diffraction, Synchrotron Powder Diffraction (D. L. Bish and J. E. Post), pp.309–331, The Mineralogical Society of America, Washington D.C.Google Scholar
  44. 44.
    Hasegawa, M. and Badding, J. V. (1997) Rietveld analysis using a laboratory-based high pressure X-ray diffraction system and film-based detection., Rev. Sci. Instrum. 68, 2298–2300.ADSCrossRefGoogle Scholar
  45. 45.
    Singh, A. K., Mao, H. K., Shu, J. and Hemley, R. J. (1998) Estimation of single-crystal elastic moduli from polycrystalline X-ray diffraction at high pressure: Application to Fe0 and iron, Phys. Rev. Lett. 80, 2157–2160.ADSCrossRefGoogle Scholar
  46. 46.
    Mao, H. K., Jephcoat, A. P., Hemley, R J., Finger, L. W., Zha, C. S., Hazen, R. M. and Cox, D. E. (1988) Synchrotron X-ray diffraction measurements of ingle-crystal hydrogen to 26.5 GPa, Science 239, 1131–1134.ADSCrossRefGoogle Scholar
  47. 47.
    Loubeyre, P., Le Toullec, R., Pinceaux, J. P., Mao, H. K., Hu, J. Z. and Hemley, R. J. (1993) Equation of stateand phase diagram o solid 4He from single-crystal X-ray diffraction over a large P-T domain, Phys. Rev. Lett. 71, 2272–2275.ADSCrossRefGoogle Scholar
  48. 48.
    Mao, H. K. and Hemley, R. B. (1996) Energy dispersive X-ray diffraction of micro-crystals at ultrahigh pressures, High Pressure Res. 14, 257–267.ADSCrossRefGoogle Scholar
  49. 49.
    Loubeyre, P., Le Toullec, R., Hausermann, D., Hanfland, M., Hemley, R J., Mao, H. K. and Finger, L. W. (1996) X-ray diffraction and equation of state of hydrogen at megabar pressures, Nature 383, 702–704.ADSCrossRefGoogle Scholar
  50. 50.
    Katrusiak, A. (1999) Facilitating preparation of gaskets for routine high-pressure diffraction studies, J. Appl. Cryst. 32, 1021–1023.CrossRefGoogle Scholar
  51. 51.
    Zha, C. S., Mao, K. H. and Hemley, R. J. (2000) Elasticity of MgO and a primary pressure scale to 55 GPa, Proc. Nat. Acad Sci. USA 97, 13494.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • E. Soignard
    • 1
    • 2
  • P. F. McMillan
    • 1
    • 2
  1. 1.Department of Chemistry, Christopher Ingold LaboratoriesUniversity College LondonLondonUK
  2. 2.Davy-Faraday Research LaboratoryRoyal Institution of Great BritainLondonUK

Personalised recommendations