Skip to main content

General Description of Hydrogen-Bonded Solids at Varied Pressures and Temperatures

Specific features of hydrogen-bonds at high pressures

  • Conference paper
High-Pressure Crystallography

Part of the book series: NATO Science Series ((NAII,volume 140))

Abstract

Hydrogen bonds are abundant in Nature. They are intrinsic to the interactions of water molecules and to most of biological substances, cellulose, proteins, DNA strands, or pharmaceutical drugs. Hydrogen bonds are present in numerous minerals in the Earth crust, in water aggregates of water vapour, and in the tiny droplets or ice particles in the clouds. Just like other types of interactions — van der Waals, electrostatic or metallic forces — hydrogen bonds shape the properties of substances, the ability of molecules to form aggregates, to associate with the molecules of other substances, and generally the physical properties of hydrogen-bonded materials. It is due to hydrogen bonds that new branches of chemical sciences have developed, such as supramolecular chemistry or the chemistry of inclusion compounds. In the physical sciences there are several long-studied problems related to hydrogen bonding, such as the transformations of water and ice [1–4] or the paraelectric-ferroelectric phase transition in the KH2PO4 and KH2PO4-type crystals [5–12]. For a detailed comprehension of the properties of hydrogen-bonded substances it is essential that the structural transformations of hydrogen bonds are classified and understood. Hydrogen bonds are different from other intermolecular interactions because they are directional, and because they involve at least three atoms: the H-atom donor, the H-atom, and the H-atom acceptor. Moreover, there is a considerable variety of different types of hydrogen bonds, between different H-donors and H-acceptors, or those involving two, or more interacting groups, in different environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ohimine, I. and Saito, Sh. (1999) Water dynamics: fluctuation, relaxation, and chemical reactions in hydrogen bond network rearrangement, Acc. Chem. Res. 32, 741–749.

    Article  Google Scholar 

  2. Kuhs, W. F. and Lehamann, M. S. (1986) The structure of ice-Ih, Water Sci. Rev. 2, 1–65.

    Article  Google Scholar 

  3. Franks, F. (Ed.) (1972) Water A Comprehensive Treatise, Plenum Press, New York — London.

    Google Scholar 

  4. Nylud, E. S. and Tsironis, G. P. (1991) Evidence for solitons in hydrogen-bonded systems, Phys. Rev. Lett. 66, 1886–1889.

    Article  ADS  Google Scholar 

  5. Nelmes, R. J. (1987) Structural studies of KDP and KDP-type transition by neutron and X-ray diffraction: 1970–1985, Ferroelectrics 71, 87–123.

    Article  Google Scholar 

  6. McMullan, R. K., Thomas, R. and Nagle, J. F. (1982) Structures of the paraelectric and ferroelectric phases of NaD3(SeO3)2 by neutron diffraction: A vertex model for the ordered ferroelectric state, J. Chem. Phys. 77, 537–547.

    Article  ADS  Google Scholar 

  7. Yasuda, N., Okamoto, M., Shimizu, H., Fujimoto, S., Yoshino, K. and Inuishi, Y. (1978) Pressure-induced antiferroelectricity in ferroelectric CsH2PO4, Phys. Rev. Lett. 41, 1311–1314.

    Article  ADS  Google Scholar 

  8. Poprawski, R. and Dziedzic, J. (1988) Hydrostatic pressure influence on phase transitions in rubidium hydrogen selenate crystals, Solid State Commun., 66, 1257–1260.

    Article  ADS  Google Scholar 

  9. Poprawski, R., Mróz, J., Czapla, Z. and Sobczyk, L. (1979) Ferroelectric properties and domain structure in RbHSeO4 crystals, Acta Phys. Polon. A 55, 641–646.

    Google Scholar 

  10. Hollander, F. J., Semmingsen, D. and Koetzle, T. F. (1977) The molecular and crystal structure of squaric acid (3,4-dihydroxy-3-cyclobutene-1,2-dione) at 121°C: A neutron diffraction study, J. Chem. Phys. 67, 4825–4831.

    Article  ADS  Google Scholar 

  11. Semmingsen, D., Hollander, F. J. and Koetzle, T. F. (1977) A neutron diffraction study of squaric acid (3,4dihydroxy-3-cyclobutene-1,2-dione), J. Chem. Phys. 66, 4405–4412

    Article  ADS  Google Scholar 

  12. Samara, G. A. and Semmingsen, D. (1979) Effects of pressure on the dielectric properties and phase transition of the 2-D antiferroelectric squaric acid (H2C404 and D2C4O4), J. Chem. Phys. 71, 1401–1407.

    Article  ADS  Google Scholar 

  13. Putkonen, M.-L., Feld, R., Vettier, C. and Lehmann, M. S. (1985) Powder neutron diffraction analysis of the hydrogen bonding in deutero-oxalic acid dihydrate at high pressures, Acta Cryst. B 41, 77–79.

    Article  Google Scholar 

  14. Boldyreva, E. V., Naumov, D. Yu., and Ahsbahs, H. (1998) Distortion of crystal structures of some CoI ammine complexes. III. Distortion of crystal structure of [Co(NH3)5NO2]C12 at hydrostatic pressures up to 3 5 GPa, Acta Cryst. B 54, 798–808.

    Article  Google Scholar 

  15. Herbstein, F. H. (1996) Some applications of thermodynamics in crystal chemistry, J. Mol. Struct. 374, 111–128

    Article  ADS  Google Scholar 

  16. Klamut, J., Durczewski, K. and Sznajd, J. (1979) Wstęp do fizyki przejść fazowych, Ossolineum, Wroclaw. [in Polish]

    Google Scholar 

  17. Katrusiak, A. (1991) Structure and phase transition of 1,3-cyclohexanedione crystals as a function of temperature, Acta Cryst. B 47, 873–879.

    Article  Google Scholar 

  18. Katrusiak, A. (1990) High-pressure X-ray diffraction study on the structure and phase transition of 1,3cyclohexanedione crystals, Acta Cryst. B 46, 246–256.

    Article  Google Scholar 

  19. Allan, D. R., Loveday, J. S., Nelmes, R. J. and Thomas, P. A. (1994) A high-pressure structural study or Potassium titanyl phosphate (KTP) up to 5GPa, J. Phys. Condensed Matter 4, 2747–2760.

    Article  ADS  Google Scholar 

  20. Boldyreva, E. V., Shakhtshneider, T. P., Vasilchenko, M. A., Ahsbahs, H. and Uchtmann H. (2000). Anisotropic crystal structure distortion of the monoclinic polymorph of acetaminophen at high hydrostatic pressure, Acta Cry’st. B 56, 299–309.

    Article  Google Scholar 

  21. Hazen, R. M., Hoering, Th. C., and Hofmeister, A. M. (1987) Compressibility and high-pressure phase transition of a metalloporphyrin: (5,10,15,20-ttetraphenyl-21 H,23H-porphinato)cobalt (II), J. Phys. Chem. 91, 5042–5045

    Article  Google Scholar 

  22. Budzianowski, A. and Katrusiak, A. (2002) Coupling of the lactone-ring conformation with crystal symmetry in 6-hydroxy-4,4,5,7,8-pentamethyl-3,4-dihydrocoumarin, Acta Cryst. B 58 125–133.

    Article  Google Scholar 

  23. Katrusiak, A. (1993) Geometric effects of H-atom disordering in hydrogen-bonded ferroelectrics, Phys. Rev. B 48, 2992–3002;

    Article  ADS  Google Scholar 

  24. Katrusiak, A. Stereochemistry and transformation of —OH— O= hydrogen bonds. Part I. Polymorphism and phase transition of 1,3-cyclohexanedione crystals, J. Mol. Struct. 269, 329–354.

    Google Scholar 

  25. Katrusiak, A (1995) Coupling of displacive and order-disorder transformations in hydrogen-bonded ferroelectrics, Phys. Rev. B 51, 589–592.

    Article  ADS  Google Scholar 

  26. Katrusiak, A. (1996) Stereochemistry and transformation of —OH—O= hydrogen bonds. Part II. Evaluation of Te in hydrogen-bonded ferroelectrics from structural data, J. Mol. Struct. 374, 177–189.

    Article  ADS  Google Scholar 

  27. Katrusiak, A. (1996) Structural origin of tricritical point in KDP-type ferroelectrics, Ferroelectrics 188, 5–10.

    Article  Google Scholar 

  28. Kobayshi, J., Uesu, Y., Mizutani, I. and Enomoto, Y. (1970) X-ray study on thermal expansion of ferroelectric KH2PO4, Physica stat. solidi (a) 3, 63–69.

    Article  ADS  Google Scholar 

  29. Katrusiak, A. (2001) Pressure-induced H-transfers in the networks of hydrogen bonds, in H. D. Hochheimer, B. Kuchta, P. K. Dorhout and J. F. Yarger (eds.) Frontiers of High Pressure Research II Application of High Pressure to Low-Dimensional Novel Electronic Materials, Kluwer Academic Publishers, Dordrecht, pp. 7385.

    Google Scholar 

  30. Katrusiak, A. (1998) Modelling hydrogen-bonded crystal structures beyond resolution of diffraction methods, Pol. J. Chem. 72, 449–459.

    Google Scholar 

  31. Katrusiak, A. (1996) Rigid H2O molecule model of anomalous thermal expansion of ice, Phys. Rev. Lett. 77, 4366–4369.

    Article  ADS  Google Scholar 

  32. Katrusiak, A. (1999) Stereochemistry and transformations of NH--N hydrogen bonds. Part I. Structural preferences for the H-site, J. Mol. Struct. 474, 125–133.

    Article  ADS  Google Scholar 

  33. Katrusiak, A. and Szafrański, M (1999) Ferroelectricity in NH--N hydrogen-bonded crystals, Phys. Rev. Lett. 82, 576–579.

    Article  ADS  Google Scholar 

  34. Szafrański, M. and Katrusiak, A. (2002) Ferroelectric order of parallel bistable hydroen bonds, Phys. Rev. Lett. 89, 215507–14.

    Article  ADS  Google Scholar 

  35. Katrusiak, A. (1996) Macroscopic and structural effects of hydrogen-bond transformations, Crystallogr. Rev. 5, 133–180

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Katrusiak, A. (2004). General Description of Hydrogen-Bonded Solids at Varied Pressures and Temperatures. In: Katrusiak, A., McMillan, P. (eds) High-Pressure Crystallography. NATO Science Series, vol 140. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2102-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2102-2_31

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1954-8

  • Online ISBN: 978-1-4020-2102-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics