Advertisement

High-Pressure Crystallography at Elevated Temperatures: Experimental Approach

  • L. Dubrovinsky
  • N. Dubrovinskaia
Conference paper
Part of the NATO Science Series book series (NAII, volume 140)

Abstract

During the last few decades, diamond anvil cell (DAC) techniques have become the most successful method of pressure generation for work in the multimegabar pressure range. However, there are still problems related to carrying out in-situ high-temperature experiments. We describe two most common methods of heating in DACs — internal laser heating and external electrical (resistive) heating. The two methods are complimentary and allow temperatures over 3000 K at pressures over 200 GPa. Application of the high-temperature high-pressure methodology is illustrated with studies on structures and phase relations of geophysically important materials — iron oxide Fe3O4 and iron-nickel alloys.

Keywords

Laser Heating Diamond Anvil Cell Seismic Anisotropy Trigonal Prism Backing Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eremets, M. (1996) High Pressure Experimental Methods, Oxford University Press, New York.Google Scholar
  2. 2.
    Hazen, R. M., Finger, L. W. (1982) Comparative Crystal Chemistry, John Willey & Sons, New York.Google Scholar
  3. 3.
    Hemley, R. J. (ed.) (1998) Ultrahigh-pressure Mineralogy, Rev. Mineralogy 37, New YorkGoogle Scholar
  4. 4.
    Andrault, D., Fiquet, G., Charpin, T., Le Bihan, T. (2000) Structure analysis and stability field of b-iron at high P and T, Am. Mineral. 85, 364–370.Google Scholar
  5. 5.
    Dubrovinsky, L. S., Lazor, P., Saxena, S. K., Häggkvist, P., Weber, H.-P., LeBihan, T. (1999) Study of laser heated iron using third generation synchrotron X-ray radiation facility with imaging plate at high pressure. Phys. Chem. Minerals 26, 539–545.ADSCrossRefGoogle Scholar
  6. 6.
    Shen, G., Mao, H. K., Hemley, R. J., Duffy, T. S., Rivers, M. L. (1998) Melting and crystal structure of iron at high pressures and temperatures, Geophys. Res. Letters 25, 373–378.ADSCrossRefGoogle Scholar
  7. 7.
    Watanuki, T., Shimomura, O., Yagi, T., Kondo, T., Isshiki, M. (2001) Construction of laser-heated diamond anvil cell system for in situ x-ray diffraction study at SPring-8, Rev. Sci. Instrum. 72, 1289–1292.ADSCrossRefGoogle Scholar
  8. 8.
    Manga, M. and Jeanloz, R. (1997) Thermal conductivity of corundum and periclase and implications for the lower mantle, J Geophys Res 102, 2999–3008.ADSCrossRefGoogle Scholar
  9. 9.
    Li, X., Manga M, Nguyen JH, Jeanloz R (1996) Temperature distribution in the laser-heated diamond cell with external heating, and implications for the thermal conductivity of perovskite, Geophys Res Letters 23, 3775–3778.ADSCrossRefGoogle Scholar
  10. 10.
    Dubrovinsky, L. S., Saxena, S. K. (1999) Emissivity measurements on same metals and oxides using multiwavelength spectral radiometry, High Pressure — High Temperature 31, 393–399.CrossRefGoogle Scholar
  11. 11.
    Dubrovinsky, L. S., Saxena, S. K., Tutti, F., Le Bihan, T. (1999) In situ X-ray study of thermal expansion of iron at multimegabar pressure, High Pressure — High Temperature 31, 553–559.CrossRefGoogle Scholar
  12. 12.
    Schiferl, D. (1987) Very high temperature diamond-anvil cell for x-ray diffraction, Rev. Sci. Instrum. 58, 1316–1322.ADSCrossRefGoogle Scholar
  13. 13.
    Adams, D. M., Christy, A. G. (1992) Materials for hikgh temperature diamond anvil cells, High Pressure — High Temperature 24, 1–11.Google Scholar
  14. 14.
    Rekhi, S., Dubrovinsky, L. S., Saxena, S. K. (1999) Study of temperature-induced ruby fluorescence shifts up to a pressure 15 GPa in an externally heated diamond anvil cell, High Pressure — High Temperature 31, 299–305.CrossRefGoogle Scholar
  15. 15.
    Moore, M. J., Sorensen, D. B., DeVaies, R. C. (1970) High-temperature diamond anvil cell, Rev. Sci. Instrum. 41, 1665–1666.ADSCrossRefGoogle Scholar
  16. 16.
    Basset, W. A., Shen, A. H., Bucknum, M., Chou, i.-M. (1993) A new diamond anvil cell for hydrothermal studies to 2.5 GPa and from -190 to 1200 °C, Rev. Sci. Instrum. 64, 2340–2345.ADSCrossRefGoogle Scholar
  17. 17.
    Fei, Y. (1996) Mineral spectroscopy: A tribute to Roger Burns, Spec. M. D. Dyar, C. MacCommon, M. W. Schaefer (eds.), Pub. Geochemical Soc., Toronto.Google Scholar
  18. 18.
    Cox, P. A. (1992) Transition Metal Oxides, Clarendon Press, Oxford.Google Scholar
  19. 19.
    Fei, Y., Frost, D. J., Mao, H. K., Prewitt, C. T., Häusermann, D. (1999) In situ structure determination of the high-pressure phase of Fe304, Am. Mineralogist 84, 203–206.Google Scholar
  20. 20.
    Mao, H. K., Takahashi, T., Basset, W. A., Kinsland, G. L., Merrill, L. (1974) The wüstite enigma, J. Geophys. Res. 79, 1165–1170.ADSCrossRefGoogle Scholar
  21. 21.
    Haavik, C., Stølen, S., Fjellvåg, H., Hanfland, M., Häusermann, D. (2000) Equation of state of magnetite and its high-pressure modification: Thermodynamics of the Fe-O system at high pressure, Am. Mineralogist 85, 514–523.Google Scholar
  22. 22.
    Morris, E. R., Williams, Q. (1997) Electrical resistivity of Fe3O4 to 48 GPa: compression-induced electron hoping at mantle pressures, J. Geophys. Phys. 102, 18139–18148.ADSCrossRefGoogle Scholar
  23. 23.
    Anderson, D. (1989) Theory of Earth, Blackwell Scientific Publications, Oxford.Google Scholar
  24. 24.
    Marfunin, A. S. (1998) Advance Mineralogy, N.-Y., Springer-Verlag.CrossRefGoogle Scholar
  25. 25.
    Mao, H. K., Wu, Y., Chen, L. C., Shu, J. F. and Jephcoat, A. P. (1990) Static compression of iron to 300 GPa and Fe0.8Ni0.2 alloy to 260 GPa: implications for composition of the core, J. Geophys. Res. 95, 21737–21742.ADSCrossRefGoogle Scholar
  26. 26.
    Dubrovinsky, L. S., Dubrovinskaia, N. A., Abrikosov, I. A., Vennström, M., Westman, F., Carlson, S., Van Schilfgaarde, M. and Johansson, B. (2001) Pressure induced Invar effect in Fe-Ni alloys, Phys. Rev. Letters 86, 4851–4854.ADSCrossRefGoogle Scholar
  27. 27.
    Lin, J.-F., Heinz, D. L., Campbell, A. J., Devine, J. M., Mao, W. L. and Shen, G. (2002) Ironnickel alloy in the Earth’s core, Geophys. Res. Letters 29, 1471–1474.ADSCrossRefGoogle Scholar
  28. 28.
    Huang, E., Basset, W. and Weathers, M. S. (1992) Phase diagram and elastic properties of Fe30%Ni alloy by synchrotron radiation, J. Geophys. Res. 97, 4497–4502.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • L. Dubrovinsky
    • 1
  • N. Dubrovinskaia
    • 1
  1. 1.Bayerisches GeoinstitutUniversity BayreuthBayreuthGermany

Personalised recommendations