Abstract
Equations of State (EOS) for a given thermodynamic system are usually considered to represent relations between the pressure, p, the volume, V, and the temperature, T, in the form p = p(V,T) or V = V(p,T). In most cases only the isothermal relations p = PT(V) or V = VT(p) are studied experimentally. Therefore in most cases only “parametric” EOS forms are discussed, in which the experimentally determined parameters for the volume V0(T), for the bulk modulus K0(T) and for its first and higher order pressure derivatives K′0 (T), K″0(T), ...., represent the values for ambient (zero) pressure at the given temperature T. Different isotherms are thereby represented usually by the same parametric EOS form with only different values for V0(T), K0(T), K′0(T), ....
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Falk, G. (1990) Physik - Zahl und Realität, Birkhäuser, Basel.
Zharkov, V.N., and Kalinin, V.A. (1971) Equations of state forJonas at Hign rressure urtu Temperatures, Consultants Bureau, New York.
Stacey, F.D., Brennan, B.J., and Irvine, R.D. (1981) Finite strain theories and comparisons with seismological data, Geophysical Surveys 4, 189–232.
Godwal, B.K., Sikka, S.K., and Chidambaram, R. (1983) Equations of state theories of condensed matter up to about 10 TPa, Phys. Rep. 102, 121–197.
Eliezer, S., and Ricci, R.A. (1991) High-Pressure Equations of State: Theory and Applications, Elsevier Science Publishers, Amsterdam.
Anderson, O.L. (1995) Equations of State for Geophysics and Ceramic Science. Oxford University Press, New York.
Holzapfel, W.B. (1996) Physics of solids under strong compression, Rep. Prog. Phys. 49, 29–90.
Holzapfel, W.B. (1998) Equations of state for solids under strong compression, High Press. Res. 16, 81–126.
Poirier, J.-P. (1990) Introduction to the Physics of the Earth’s Interior, Cambridge University Press, Cambridge.
Holzapfel, W.B. (2001) Equations of state for solids under strong compression, Z. Kristallogr. 216, 473–488.
Murnaghan, F.D. (1937) Finite deformations of an elastic solid, Am. J. Math. 59, 235–260.
Murnaghan, F.D. (1944) The compressibility of media under extreme pressure, Proc. Natl. Acad. Sci. USA 30, 244–247.
Freund, J., and Ingalls, R. (1989) Inverted isothermal equations of state and determination of Bo, B’o and B”o, J. Phys. Chem. Solids 50, 263–268.
Baonza, V.G., Cäceres, M., and Nunez, J. (1995) Universal compressibility behaviour of dense phases, Phys. Rev. B 51, 28–37.
Birch F. (1947) Finite elastic strain of cubic crystals, Phys. Rev. 71, 809–824.
Vinet, P., Ferrante, J., Smith, J.R., and Rose, J.H. (1986) A universal equation of state for solids, J. Phys. Condens. Matter 19, L467-L473.
Slater, J.C., and Krutter, H.M. (1935) The Thomas-Fermi method for metals, Phys. Rev. 47, 559–568.
Feynman, R.P., Metropolis, N., and Teller, E. (1949) Equation of state of elements based on the generalized Fermi-Thomas Theory, Phys. Rev. 75, 1561.
Salpeter, E.E, and Zapolsky, H.S. (1967) Theoretical high-pressure equations of state including correlation energy, Phys. Rev. 158, 876–886.
Landau, L.D., and Lifshitz, E.M. (1980) Statistical Physics. Part 1–3r ed., Pergamon Press, Oxford.
Stacey, F.D. (2000) The J-primed approach to high-pressure equations of state, Geophys. J. Int. 143, 621–628.
Mie, G. (1903) Zur kinetischen Theorie der einatomigen Körper, Ann d. Phys. 11, 657–697.
Jones, J.E. (1924) On the determination of molecular fields, Proc. Roy. Soc. (London) A106, 441–462.
Born, M., and Mayer, J. (1932) Zur Gittertheorie der Ionenkristalle, Z. Physik 75, 1–18.
Morse, Ph.M. (1929) Diatomic molecules according to the wave mechanics. II. vibrational levels, Phys. Rev. 34, 57–64.
Rydberg, R. (1932) Graphische Darstellung einiger bandenspektroskopischer Ergebnisse, Z Physik 73, 376–385.
Vinet, P., Rose, J.H., Ferrante, J., and Smith, J.R. (1989) Universal features of the equation of state of solids, J. Phys. Condens. Matter 1, 1941–1963.
Holzapfel, W.B. (1991) Equations of state for strong compression, High Press. Res. 7, 290–293.
Holzapfel, W.B. (2002) Equations of state for regular solids, High Press. Res. 22, 209–216.
Holzapfel, W.B., Hartwig, M., and Reiss, G. (2001) Equations of state for rare gas solids under strong compression, J Low Temp. Phys. 122, 401–412.
Holzapfel, W.B. (2003) Comment on „Energy and pressure versus volume: Equation of state motivated by the stabilized jellium model”, Phys. Rev. B67, 026102/1–3.
Köhler, U., Johannsen, P.G., and Holzapfel, W.B. (1997) Equation of state data for CsCl-type alkali halides, J Phys.: Condens. Matter 9, 5581–5592.
Holzapfel, W.B. (1994) Approximate equations of state for solids from limited data sets, J. Phys. Chem. Solids 55, 711–719.
Einstein, A. (1907) Die Plancksche Theorie der Strahlung and die Theorie der spezifischen Wärme, Ann d. Phys. 22, 180–194.
Grüneisen, E. (1912) Theorie des festen Zustandes einatomiger Elemente, Ann. d. Phys. IV, 257–306.
Debye, P. (1912) Zur Theorie der spezifischen Wärme, Ann. d. Phys. 39, 789–839.
Kieffer, S.W. (1979) Thermodynamics and lattice vibrations of minerals. 3. Lattice dynamics and an approximation for minerals with application to simple substances and framework silicates, Rev. Geophys. Space Phys. 17, 35–59.
Gillet, Ph., Guyot, F., and Malezieux, J-M. (1998) High-pressure, high-temperature Raman spectroscopy of Ca2Ge04 (olivine form): some insight on anharmonicity, Phys. Earth Planet. Inter. 58, 141–154.
Holzapfel, W.B., Hartwig, M., and Sievers, W. (2001) Equations of state for Cu, Ag, and Au for wide ranges in temperature and pressure up to 500 GPa and Above, J. Phys. Chem. Ref Data 30, 515–529.
Holzapfel, W.B. (2002) Anharmonicity in the EOS of Cu, Ag, and Au, J. Phys.: Condens. Matter 14, 10525–10531.
Table 5.1 and discussion on p. 140 in ref. 2.
Segeletes, S.B. (1998) Army Research Laboratory, Aberdeen, USA, report number: ARL-TR-1758.
Barton, M.A., and Stacey, F.D. (1985) The Grüneisen parameter at high pressure: A molecular dynamic study, Phys. Earth Planet. Inter. 39, 167–177.
Ponkratz, U., and Holzapfel, W.B. (2003) (to be presented) at the ALRAPT conference, Bordeaux.
Oganov, A.R., Brodholt, J.P., and Price, G.D. (2000) Comparative study of quasiharmonic lattice dynamics, molecular dynamics and Debye model applied to MgSiO3 perovskite, Phys. Earth Planet. Inter. 122, 277–288.
Karasevskyy, A.I., and Holzapfel, W.B. (2003) Equations of states and thermodynamic properties of rare gas solids under pressure calculated with a self-consistent statistical method, Phys. Rev. B. (to be published).
The webpage www.EOSdata.de is presently in preparation to provide these codes and any question concerning their application should be directed to holzapfel@physik.upb.de
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer Science+Business Media New York
About this paper
Cite this paper
Holzapfel, W.B. (2004). Equations of State and Thermophysical Properties of Solids Under Pressure. In: Katrusiak, A., McMillan, P. (eds) High-Pressure Crystallography. NATO Science Series, vol 140. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2102-2_14
Download citation
DOI: https://doi.org/10.1007/978-1-4020-2102-2_14
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-1954-8
Online ISBN: 978-1-4020-2102-2
eBook Packages: Springer Book Archive