Skip to main content

Runge-Kutta Solvers for Ordinary Differential Equations

  • Chapter
Exponential Fitting

Part of the book series: Mathematics and Its Applications ((MAIA,volume 568))

Abstract

Since the original papers of Runge [24] and Kutta [17] a great number of papers and books have been devoted to the properties of Runge-Kutta methods. Reviews of this material can be found in [4], [5], [12], [18]. Kutta [17] formulated the general scheme of what is now called a Runge-Kutta method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht P. (1987). The extension of the theory of A-methods to RK methods, in: K. Strehmel, ed. Numerical Treatment of Differential Equations, Proc. 4th Seminar NUMDIFF-4, Tuebner-Texte zur Mathematik (Tuebner, Leipzig):8–18.

    Google Scholar 

  2. Albrecht, P. (1987) A new theoretical approach to RK methods. SIAM J. Numer AnaL 24: 391–406.

    Article  MATH  MathSciNet  Google Scholar 

  3. Butcher, J. C. (1964). On Runge-Kutta processes of high order. Math. Comput., 18: 50–64.

    Article  MATH  MathSciNet  Google Scholar 

  4. Butcher, J. C. (1987). The Numerical Analysis of Ordinary Differential Equations, Runge-Kutta and General Linear Methods. Chichester John Wiley and Sons.

    Google Scholar 

  5. Butcher, J. C. (2003). Numerical Methods for Ordinary Differential Equations. Chichester John Wiley and Sons.

    Google Scholar 

  6. Coleman, J. P. (1998). Mixed interpolation methods with arbitrary nodes. J. Comp. Appl. Math., 92: 69–83.

    Article  MATH  Google Scholar 

  7. Coleman, J. P. and Duxbury, S. C. (2000). Mixed collocation methods for yn = (x, y). J. Comp. AppL Math., 126: 47–75.

    Article  MATH  MathSciNet  Google Scholar 

  8. De Meyer, H., Vanthournout, J. and Vanden Berghe, G. (1990). On a new type of mixed interpolation. J. Comp. Appl. Math., 30: 55–69.

    Article  MATH  Google Scholar 

  9. England, R. (1969). Error estimates for Runge-Kutta type solutions to systems of ordinary differential equations. Comput. J., 12: 166–170.

    Article  MATH  MathSciNet  Google Scholar 

  10. Franco, J. M. (2002). An embedded pair of exponentially fitted explicit Runge-Kutta methods. J. Comp. Appl. Math., 149: 407–414.

    Article  MATH  MathSciNet  Google Scholar 

  11. Gautschi, W. (1962). Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math., 3: 381–397.

    Article  MathSciNet  Google Scholar 

  12. Hairer, E., NOrsett, S. R and Wanner G. (1993). Solving Ordinary Differential Equations I, Nonstiff Problems. Berlin Springer-Verlag.

    Google Scholar 

  13. Henrici, R. (1962). Discrete Variable Methods in Ordinary Differential Equations. John Wiley and Sons,Inc., New-York - London.

    MATH  Google Scholar 

  14. Ixaru, L. Gr. (1997). Operations on oscillatory functions. Comput. Phys. Comm., 105: 1–19.

    Article  MATH  MathSciNet  Google Scholar 

  15. Ixaru, L. Gr., De Meyer, H. and Vanden Berghe, G. (2002). Frequency evaluation in exponential fitting multistep algorithms. J. Comp. Appl. Math., 140: 423–433.

    Article  MATH  Google Scholar 

  16. Ixaru, L. Gr. and Paternoster, B. (2001). A Gauss quadrature rule for oscillatory integrands. Comput. Phys. Comm., 133: 177–188.

    Article  MATH  MathSciNet  Google Scholar 

  17. Kutta, W. (1901). Beitrag zur näherungsweisen Integration totaler Differentialgleichungen. Zeitschr. für Math. u. Phys., 46: 435–453.

    MATH  Google Scholar 

  18. Lambert, J. D. (1991). Numerical Methods for Ordinary Differential Systems, The Initial Value Problem. Chichester John Wiley and Sons.

    Google Scholar 

  19. Lyche, T. (1972). Chebyshevian multistep methods for ordinary differential equations. Numer. Math., 19: 65–75.

    Article  MATH  MathSciNet  Google Scholar 

  20. Oliver, J. (1975). A Curiosity of Low-Order Explicit Runge-Kutta Methods. Math. Comp., 29: 1032–1036.

    Article  MATH  MathSciNet  Google Scholar 

  21. Ozawa, K. (1999). A Four-stage Implicit Runge-Kutta-Nyström Methods with Variable Coefficients for Solving Periodic Initial Value Problems. Japan Journal of Industrial and Applied Mathematics, 16: 25–46.

    Article  MathSciNet  Google Scholar 

  22. Paternoster, B. (1998). Runge-Kutta(-Nyström) methods for ODEs with periodic solutions based in trigonometric polynomials, Appl. Num. Math., 28: 401–412.

    Article  MATH  MathSciNet  Google Scholar 

  23. Runge, C. and König, H. (1924). Vorlesungen über numerisches Rechnen, Grundlehren XI, Springer Verlag.

    Book  MATH  Google Scholar 

  24. Runge, C. (1895). Über die numerische Auflösung von Differentialgleichungen. Math. Ann., 46: 167–192.

    Article  MATH  MathSciNet  Google Scholar 

  25. Simos, T. E., Dimas, E. and Sideridis,A. B. (1994). A Runge-Kutta-Nyström method for the numerical integration of special second-order periodic initial-value problems, J. Comp. Appl. Math., 51: 317–326.

    Article  MATH  MathSciNet  Google Scholar 

  26. Simos, T. E. (1998). An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions. Comput. Phys. Comm., 115: 1–8.

    Article  MATH  MathSciNet  Google Scholar 

  27. Simos, T. E. (2001). A fourth algebraic order exponentially-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. IMA Journ. of Numerical Analysis, 21: 919–931.

    Article  MATH  MathSciNet  Google Scholar 

  28. Vanden Berghe,G., De Meyer, H. Van Daele, M. and Van Hecke, T. (1999). Exponentially-fitted explicit Runge-Kutta methods. Computer Phys. Comm., 123: 7–15.

    Article  Google Scholar 

  29. Vanden Berghe, G., De Meyer, H., Van Daele, M. and Van Hecke, T. (2000). Exponentially-fitted Runge-Kutta methods. J. Comp. Appl. Math., 125: 107–115.

    Article  MATH  Google Scholar 

  30. Vanden Berghe, G., Ixaru, L. Gr. and Van Daele, M. (2001). Optimal implicit exponentially-fitted Runge-Kutta methods. Comp. Phys. Commun., 140: 346–357.

    Article  MATH  Google Scholar 

  31. Vanden Berghe, G., Ixaru, L. Gr. and De Meyer, H. (2001). Frequency determination and step—length control for exponentially-fitted Runge—Kutta methods. J. Comp. Appl. Math., 132: 95–105.

    Article  MATH  Google Scholar 

  32. Vanden Berghe, G., Van Daele, M. and Vande Vyver, H. (2003). Exponential-fitted Runge—Kutta methods of collocation type: fixed or variable knot points? J. Comp. AppL Math., 159: 217–239.

    Article  MATH  Google Scholar 

  33. Van der Houwen, P. J. and Sommeijer, B. P. (1987). Explicit Runge-Kutta(-Nyström) methods with reduced phase errors for computing oscillating solution. SIAM J. Numer AnaL, 24: 595–617.

    Article  MATH  MathSciNet  Google Scholar 

  34. Van der Houwen, P. J. and Sommeijer, B. P. (1987). Phase-lag analysis of implicit Runge-Kutta methods. SIAM J. Numer Anal., 26: 214–228.

    Article  Google Scholar 

  35. Van der Houwen,P. J., Sommeijer, B. P., Strehmel, K. and Weiner, R. (1986). On the numerical integration of second order initial value problems with a periodic forcing force. Computing, 37: 195–218.

    Article  MATH  MathSciNet  Google Scholar 

  36. Wright, K. (1970). Some relationships between implicit Runge-Kutta, collocation and Lanczos r-methods, and their stability properties. BIT, 10: 217–227.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ixaru, L.G., Vanden Berghe, G. (2004). Runge-Kutta Solvers for Ordinary Differential Equations. In: Exponential Fitting. Mathematics and Its Applications, vol 568. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2100-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2100-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6590-2

  • Online ISBN: 978-1-4020-2100-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics