Skip to main content

Introduction

  • Chapter
Exponential Fitting

Part of the book series: Mathematics and Its Applications ((MAIA,volume 568))

  • 537 Accesses

Abstract

The simple approximate formula for the computation of the first derivative of a function y(x),

$$ y'\left( x \right) \approx \frac{1}{{2h}}\left[ {y\left( {x + h} \right) - y\left( {x - h} \right)} \right], $$
((1.1))

is known to work well when y(x) is smooth enough. However, if y(x) is an oscillatory function of the form

$$ y'\left( x \right) = {f_1}\left( x \right)\sin \left( {\omega x} \right) + {f_2}\left( x \right)\cos \left( {\omega x} \right) $$
((1.2))

with smooth f 1(x) and f 2(x), the slightly modified formula

$$ y'\left( x \right) \approx \frac{1}{{2h}} \cdot \frac{\theta }{{\sin \theta }} \cdot \left[ {y\left( {x + h} \right) - y\left( {x - h} \right)} \right], $$
((1.3))

whereθ=ωh, becomes appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alaylioglu, G., Evans, G. A. and Hyslop, J. (1976). The use of Chebyshev series for the evaluation of oscillatory integrals. Comput. J., 19: 258–267.

    Article  MATH  MathSciNet  Google Scholar 

  2. Andrew, A. L. and Paine, J. W. (1985). Correction of Numerov’s eigenvalue estimates. Numer. Math„ 47: 289–300.

    Article  MATH  MathSciNet  Google Scholar 

  3. Bakhvalov, N. S. and Vasil’eva, L. G. (1969). Evaluation of the integrals of oscillating functions by interpolation at nodes of Gaussian quadratures. USSR Comput. Math and Math. Phys., 8: 241–249.

    Article  Google Scholar 

  4. Bocher, P., De Meyer H. and Vanden Berghe G. (1994). Modified Gregory formulae based on mixed interpolation. Intern. Computer Math., 52: 109–122.

    Article  Google Scholar 

  5. Bocher, P., De Meyer H. and Vanden Berghe G. (1994). Numerical solution of Volterra equations based on mixed interpolation. Computers Math. Applic., 27: 1–11.

    Article  MATH  Google Scholar 

  6. Bock, P. and Murray, F. J. (1952). The use of exponential sums in step by step integration. Mathematical Tables and other Aids to Computation, 6: 63–78 and 138–150.

    Article  MathSciNet  Google Scholar 

  7. Brunner, H., Makroglou, A. and Miller, R. K. (1997). Mixed interpolation collocation methods for first and second order Volterra integro-differential equations with periodic solution. Appl. Num. Math. 23: 381–402.

    Article  MATH  MathSciNet  Google Scholar 

  8. Coleman, J. P. (1989). Numerical methods for y“ = f(x, y) via rational approximations for the cosine. IMA J. Numer. Anal., 9: 145–165.

    Article  MATH  MathSciNet  Google Scholar 

  9. Coleman, J. P. and Ixaru, L. Gr. (1996). P-stability and exponential-fitting methods for y“ = f (x, y). IMA J. Numer. Anal., 16: 179–199.

    Article  MATH  MathSciNet  Google Scholar 

  10. Davis, P. J. and Rabinowitz, P. (1984). Methods of Numerical Integration. Academic Press, New York.

    MATH  Google Scholar 

  11. De Meyer, H., Vanthournout, J. and Vanden Berghe, G. (1990). On a new type of mixed interpolation. J. Comput. Appl. Math., 30: 55–69.

    Article  MATH  MathSciNet  Google Scholar 

  12. Denk, G. (1993). A new numerical method for the integration of highly oscillatory second-order ordinary differential equations. Appl. Numer. Math., 13: 57–67.

    Article  MATH  MathSciNet  Google Scholar 

  13. Dennis, S. C. R. (1960). The numerical integration of ordinary differential equations pos-sesing exponential type solutions. Proc. Cambridge PhiL Soc., 65: 240–246.

    Article  MathSciNet  Google Scholar 

  14. Ehrenmark, U. T. (1988). A three-point formula for numerical quadrature of oscillatory integrals with variable frequency. J. Comput. AppL Math., 21: 87–99.

    Article  MATH  MathSciNet  Google Scholar 

  15. Evans, G. (1993). Practical Numerical Integration. John Wiley & Sons Ltd., Chichester.

    MATH  Google Scholar 

  16. Evans, G. A. and Webster, J. R. (1997). A high order, progressive method for the evaluation of irregular oscillatory integrals. AppL Num. Math., 23: 205–218.

    Article  MATH  MathSciNet  Google Scholar 

  17. Gautschi, W. (1961). Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer Math., 3: 381–397.

    Article  MATH  MathSciNet  Google Scholar 

  18. Gautschi, W. (1970). Tables of Gaussian quadrature rules for the calculation of Fourier coefficients. Math. Comp., 24: microfiche.

    Google Scholar 

  19. Greenwood, R. E. (1949). Numerical integration of linear sums of exponential functions. Ann. Math. Stat., 20: 608–611.

    Article  MATH  MathSciNet  Google Scholar 

  20. Henrici, P. (1962). Discrete Variable Methods in Ordinary Differential Equations. Wiley, New York.

    MATH  Google Scholar 

  21. Ixaru, L. Gr. (1984). Numerical Methods for Differential Equations and Applications. Reidel, Dordrecht - Boston - Lancaster.

    MATH  Google Scholar 

  22. Ixaru, L. Gr. (1997). Operations on oscillatory functions. Comput. Phys. Commun., 105: 1–19.

    Article  MATH  MathSciNet  Google Scholar 

  23. Levin, D. (1982). Procedures for computing one and two dimensional integrals of functions with rapid irregular oscillations. Math. Comp, 38: 531–538.

    Article  MATH  MathSciNet  Google Scholar 

  24. Liniger, W., Willoughby, R. A. (1970). Efficient integration methods for stiff systems of ordinary differential equations. SIAM J. Numer AnaL, 7: 47–66.

    Article  MATH  MathSciNet  Google Scholar 

  25. Lyche, T. (1974). Chebyshevian multistep methods for ordinary differential equations. Numer Math., 19: 65–75.

    Article  MathSciNet  Google Scholar 

  26. Patterson, T. N. L. (1976). On high precision methods for the evaluation of Fourier integrals with finite and infinite limits. Numer Math., 24: 41–52.

    Article  MathSciNet  Google Scholar 

  27. Piessens, R. (1970). Gaussian quadrature formulae for the integration of oscillating func-tions. ZAMM, 50: 698–700.

    Article  MATH  Google Scholar 

  28. Salzer, H. E. (1962). Trigonometric interpolation and predictor-corrector formulas for numerical integration. ZAMM, 9: 403–412.

    Article  Google Scholar 

  29. Sheffield, C. (1969). Generalized multi-step methods with an application to orbit compu-tation. Celestial Mech., 1: 46–58.

    Article  MATH  MathSciNet  Google Scholar 

  30. Stiefel, E. and Bettis, D. G. (1969). Stabilization of Cowell’s method. Numer Math., 13: 154–175.

    Article  MATH  MathSciNet  Google Scholar 

  31. Van Daele, M., De Meyer, H. and Vanden Berghe, G. (1992). Modified Newton—Cotes formulae for numerical quadrature of oscillatory integrals with two independent frequencies. Intern. J. Comput. Math., 42: 83–97.

    Article  MATH  Google Scholar 

  32. Vanden Berghe, G., De Meyer, H. and Vanthournout, J. (1990). On a class of modified Newton—Cotes quadrature formulae based upon mixed-type interpolation. J. Comput. Appl. Math., 31: 331–349.

    Article  MATH  MathSciNet  Google Scholar 

  33. Vanden Berghe, G., De Meyer, H. and Vanthournout, J. (1990). A modified Numerov integration method for second order periodic initial—value problems. Intern. J. Computer Math., 32: 233–242.

    Article  MATH  Google Scholar 

  34. Vanden Berghe, G. and De Meyer, H. (1991). Accurate computation of higher Sturm—Liouville eigenvalues. Numer. Math., 59: 243–254.

    Article  MathSciNet  Google Scholar 

  35. Vanthournout, J., Vanden Berghe, G. and De Meyer, H. (1990). Families of backward differentiation methods based on a new type of mixed interpolation. Computers Math. Applic., 11: 19–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ixaru, L.G., Vanden Berghe, G. (2004). Introduction. In: Exponential Fitting. Mathematics and Its Applications, vol 568. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2100-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2100-8_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6590-2

  • Online ISBN: 978-1-4020-2100-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics