Skip to main content

Arguments for Quasi-One-Dimensional Room Temperature Superconductivity in Carbon Nanotubes

  • Conference paper

Part of the book series: NATO Science Series ((NAII,volume 148))

Abstract

In this article and references herein, I provide over twenty arguments for room temperature superconductivity in carbon nanotubes. The one-dimensionality of the nanotubes complicates the right-of-passage for prospective quasi-one-dimensional superconductors. The Meissner effect for individual tubes is less visible because the diameters of the tubes are much smaller than the penetration depth. Zero resistance is less obvious because of the quantum contact resistance and significant quantum phase slip, both of which are associated with a finite number of transverse conduction channels. Nonetheless, on-tube resistance at room temperature has been found to be indistinguishable from zero for many individual multi-walled nanotubes and a large Meissner effect has been observed in large bundles of multi-walled nanotubes at room temperature. On the basis of these arguments, I suggest that carbon nanotubes deserve to be classified as room temperature superconductors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. I. Tsebro, O. E. Omelyanovskii, and A. P. Moravskii, JETP Lett. 70, 462 (1999).

    Article  ADS  Google Scholar 

  2. G. M. Zhao and Y. S. Wang, cond-mat/0111268.

    Google Scholar 

  3. G. M. Zhao, cond-mat/0208197.

    Google Scholar 

  4. G. M. Zhao, cond-mat/0208198.

    Google Scholar 

  5. G. M. Zhao, cond-mat/0208200.

    Google Scholar 

  6. G. M. Zhao, cond-mat/0208201.

    Google Scholar 

  7. Y. Kopelevich et al., Physica C (in press).

    Google Scholar 

  8. A. S. Alexandrov and N. F. Mott, Polarons and Bipolarons (World Scientific, Singapore, 1995)

    Google Scholar 

  9. V.L. Ginzburg, in: V.L. Ginzburg, D. A. Kirzhnits Eds., High-Temperature Superconduc-

    Google Scholar 

  10. W. A. Little, Phys. Rev. 164, A1416 (1964).

    Article  Google Scholar 

  11. Y.C. Lee and B. S. Mendoza, Phys. Rev. B 39, 4776 (1989).

    Article  ADS  Google Scholar 

  12. S. M. Cui and C. H. Tsai, Phys. Rev. B 44, 12500 (1991).

    Article  ADS  Google Scholar 

  13. T. Giamarchi and H. J. Schulz, Phys. Rev. B 37, 325 (1988).

    Article  ADS  Google Scholar 

  14. E. Orignac and T. Giamarchi, Phys. Rev. B 56, 7167 (1997).

    Article  ADS  Google Scholar 

  15. A.A. AbrikosovandJ. A.Rhyzkin,Adv.Phys. 27, 147 (1978).

    Google Scholar 

  16. N. Giordano, Phys. Rev. B 41, 6350 (1990).

    Article  ADS  Google Scholar 

  17. A.D. Zaikinetal.,Phys. Rev. Lett. 78,1552(1997).

    Article  ADS  Google Scholar 

  18. N. Giordano and E. R. Schuler, Phys. Rev. Lett. 63, 2417 (1989).

    Article  ADS  Google Scholar 

  19. N. Giordano, Phys. Rev. B 43, 160 (1991).

    Article  ADS  Google Scholar 

  20. Z. K. Tang et al., Science, 292, 2462 (2001).

    Article  ADS  Google Scholar 

  21. J. Kong etal.,Phys. Rev. Lett. 87,106801 (2001).

    Google Scholar 

  22. D. Mann et al., cond-mat/0309044.

    Google Scholar 

  23. A. Komnik and R. Egger, cond-mat/9906150 (1999).

    Google Scholar 

  24. C. Kane, L. Balents, and M. P. A. Fisher, Phys. Rev. Lett. 79, 5086 (1997).

    Article  ADS  Google Scholar 

  25. Z. Yao, C. L. Kane, and C. Dekker, Phys. Rev. Lett. 84, 2941 (2000).

    Article  ADS  Google Scholar 

  26. J. W. G. Wildoer et al., Nature (London) 391, 59 (1998).

    Google Scholar 

  27. R. S. Lee et al., Nature (London) 388, 255 (1997).

    Google Scholar 

  28. L. Merchant etal., Phys. Rev. B 63,134508 (2001).

    Google Scholar 

  29. M. Kociak etal., Phys. Rev. Lett. 86, 2416 (2001).

    Article  ADS  Google Scholar 

  30. M. Ouyang etal., Science 292, 702 (2001).

    Article  ADS  Google Scholar 

  31. R. Walter etal., Bull Am. Phys. Soc. 47,361 (2002); The Raman data were sent by Dr. R. Walter from the University of North Carolina.

    Google Scholar 

  32. M. Krantz etal., Phys. Rev. B 38, 4992 (1988).

    Article  Google Scholar 

  33. B. Friel, C. Thomsen, and M. Cardona, Phys. Rev. Lett. 65, 915 (1990).

    Article  ADS  Google Scholar 

  34. K. M. Ham, et al., Phys. Rev. B 47,11439 (1993).

    Article  Google Scholar 

  35. R. Zeyher and G. Zwicknagl, Z. Phys. B 78, 175 (1990).

    Article  ADS  Google Scholar 

  36. R. Zeyher and G. Zwicknagl, Solid State Commun. 66, 617 (1988).

    Article  ADS  Google Scholar 

  37. M. Tinkham, Introduction to Superconductivity (McGraw-Hill, 1996 ).

    Google Scholar 

  38. J. P. Lu,Phys. Rev. Lett. 74, 1153 (1995).

    ADS  Google Scholar 

  39. O. Chauvet etal., Phys. Rev. B 52, R6963 (1995). The aligned nanotube films were produced by a process in which the tubes are ultrasonically separated.

    Google Scholar 

  40. D. Qian et al., Appl. Phys. Lett. 76, 2828 (2000).

    Article  ADS  Google Scholar 

  41. G. Baumgartner etal., Phys. Rev. B55, 6704 (1997).

    Article  ADS  Google Scholar 

  42. V. Bayot et al., Phys. Rev. B 40, 3514 (1989).

    Google Scholar 

  43. P. L. Mceuen et al., Phys. Rev. Lett. 83, 5098 (1999).

    Article  ADS  Google Scholar 

  44. S. Frank et al., Science 280, 1744 (1998).

    Article  ADS  Google Scholar 

  45. P. Poncharal et al., J. Phys. Chem. B 106, 12104 (2002).

    Google Scholar 

  46. P. J. de Pablo et al., Appl. Phys. Lett. 74, 323 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Zhao, Gm. (2004). Arguments for Quasi-One-Dimensional Room Temperature Superconductivity in Carbon Nanotubes. In: Alexandrov, A.S., Demsar, J., Yanson, I.K. (eds) Molecular Nanowires and Other Quantum Objects. NATO Science Series, vol 148. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2093-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2093-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2069-8

  • Online ISBN: 978-1-4020-2093-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics