Skip to main content

Modeling Observer and Object Motion Perception

  • Chapter
Optic Flow and Beyond

Part of the book series: Synthese Library ((SYLI,volume 324))

Abstract

When a person moves about the world, images of the surrounding scene move across his or her retinas, providing a rich source of information about the environment. The motion of the images arises from numerous sources. The observer’s own locomotion causes the images of all stationary items to move in a pattern. This pattern of image velocities on the retina is known as optic flow or retinal flow. This pattern can be a fairly simple, radial pattern (Figure 1a) if the observer moves in a straight line, or more complex (Figure 1b) if the observer moves on a curved path. In addition, the observer may make eye or head movements that also affect the flow field. Finally, objects in the world may themselves be moving, creating additional complexity in the scene (Figure 1c). Somehow the brain is able to process this motion information adeptly to ascertain the direction of motion of the observer as well as the position and direction of motion of moving objects in the scene. This ability allows soccer players to follow a moving ball while maneuvering past other running players, and drivers on busy roads to avoid moving cars and pedestrians while driving straight or negotiating turns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adiv, G. (1985). Determining three-dimensional motion and structure from optical flow generated by several moving objects, IEEE Trans. Pat. Anal. Mach. Intel., PAMI-7, 384–401.

    Google Scholar 

  • Allman, J., Miezin, F. & McGuiness, E. (1985). Direction-and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT), Perception, 14, 105–126.

    Article  PubMed  CAS  Google Scholar 

  • Beintema, J. A. & van den Berg, A. V. (1998). Heading detection using motion templates and eye velocity gain fields, Vision Res?, 38, 2155–2179.

    Article  PubMed  CAS  Google Scholar 

  • Brandt, T., Dieterich, M. & Probst, T. (1991). Self-motion and oculomotor disorders affect motion perception, in Paillard, J. (ed.), Brain and Synapse. Oxford, U.K.: Oxford Science Publications.

    Google Scholar 

  • Brenner, F. (1993). Judging an object’s velocity when its distance changes due to ego-motion, Vision Res?, 33, 487–504.

    Article  PubMed  CAS  Google Scholar 

  • Brenner, F., and van den Berg, A. V. (1996). The special role of distant structures in perceived object velocity, Vision Res?, 36, 3805–3814.

    Article  PubMed  CAS  Google Scholar 

  • Bruss, A. R. & Horn, B. K. P. (1983). Passive navigation, Comput. Vis. Graph. Im. Process., 21, 3–20.

    Article  Google Scholar 

  • Cameron, S., Grossberg, S. & Guenther, F. H. (1998). A self-organizing neural network architecture for navigation using optic flow, Neural Computat?, 10, 313–352.

    Article  CAS  Google Scholar 

  • Crowell, J. A. & Banks, M. S. (1993). Perceiving heading with different retinal regions and types of optic flow, Percept. Psychophys., 53, 325–337.

    Article  PubMed  CAS  Google Scholar 

  • Crowell, J. A. & Banks, M. S. (1996). Ideal observer for heading judgments, Vision Res?, 36, 471–490.

    Article  PubMed  CAS  Google Scholar 

  • Crowell, J. A., Royden, C. S., Banks, M. S., Swenson, K. H. & Sekuler, A. B. (1990). Optic flow and heading judgments, Invest. Ophthalmol. Vis. Sci. 31 (Suppl), 522 (Abstract).

    Google Scholar 

  • Cutting, J. E., Springer, K., Braren, P. A., & Johnson, S. H. (1992). Wayfinding on foot from information in retinal, not optical, flow, J. Exp. Psychol. Gen., 121, 41–72.

    Article  PubMed  CAS  Google Scholar 

  • Cutting, J. E., Vishton, P. M. & Braren, P. A. (1995). How we avoid collisions with stationary and moving objects, Psychol. Rev., 102, 627–651.

    Article  Google Scholar 

  • Duffy, C. J. & Wurtz, R. H. (1991). Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large field stimuli, J. Neurophysiol., 65, 1329–1345.

    PubMed  CAS  Google Scholar 

  • Duffy, C. J. & Wurtz, R. H. (1993). An illusory transformation of optic flow fields, Vision Res, 33, 1481–1490.

    Article  PubMed  CAS  Google Scholar 

  • Duffy, C. J. & Wurtz, R. H. (1995). Response of Monkey MST neurons to optic flow stimuli with shifted centers of motion, J. Neurosci., 15, 5192–5208.

    PubMed  CAS  Google Scholar 

  • Gibson, J. J. (1950). The Perception of the Visual World. Boston, Mass.: Houghton Mifflin.

    Google Scholar 

  • Graziano, M. S. A., Andersen, R. A. & Snowden, R. (1994). Tuning of MST neurons to spiral motions, J. Neurosci., 14, 54–67.

    PubMed  CAS  Google Scholar 

  • Hatsopoulos, N. G. & Warren, W. H. (1991). Visual navigation with a neural network Neural Netw.4303–317.

    Google Scholar 

  • Heeger, D. J. & Hager, G. (1988). Egomotion and the stabilized world Proceedings of the 2nd International Conference on Computer VisionTampa, FL, 435–440.

    Google Scholar 

  • Heeger, D. J. & Jepson, A. D. (1992). Subspace methods for recovering rigid motion I: Algorithm & implementation Int. J. Comput. Vis.795–117.

    Google Scholar 

  • Hildreth, E. C. (1992). Recovering heading for visually-guided navigation Vision Res.321177–1192.

    Google Scholar 

  • Hildreth, E. C. & Royden, C. S. (1998). Computing observer motion from optic flow, in Watanabe, T. (ed.) High-level Visual Motion Processing. Computational Neurobiological and Psychophysical Perspectives. Cambridge, MA: MIT Press.

    Google Scholar 

  • Lamme, V. A. F. (1995). The neurophysiology of figure-ground segregation in primary visual cortex J. Neurosci.151605–1615.

    Google Scholar 

  • Lappe, M. & Rauschecker, J. P. (1993). A neural network for the processing of optic flow from ego-motion in man and higher mammals Neural Computat.5374–391.

    Google Scholar 

  • Lappe, M. & Rauschecker, J. P. (1995). An illusory transformation in a model of optic flow processing Vision Res.351619–1631.

    Google Scholar 

  • Longuet-Higgins, H. C. & Prazdny, K. (1980). The interpretation of a moving retinal image Proc. R. Soc. Lond. B208385–397.

    Google Scholar 

  • Maunsell, J. H. R. & van Essen, D. C. (1983). Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed and orientation J. Neurophysiol.491127–1147.

    Google Scholar 

  • Niemann, T. & Hoffmann, K.-P. (1997). Motion processing for saccadic eye movements during visually induced sensation of ego-motion in humans Vision Res.373163–3170.

    Google Scholar 

  • Pack, C. & Mingolla, E. (1998). Global induced motion and visual stability in an optic flow illusion Vision Res.383083–3093.

    Google Scholar 

  • Perrone, J. A. (1992). Model for the computation of self-motion in biological systems J. Opt. Soc. Am.A 9177–194

    Google Scholar 

  • Perrone, J. A. & Stone, L. S. (1994). A model of self-motion estimation within primate extrastriate visual cortex Vision Res.342917–2938.

    Google Scholar 

  • Probst, T., Brandt, T. & Degner, D. (1986). Object-motion detection affected by concurrent self-motion perception: psychophysics of a new phenomenon Behav. Brain Res.221–11.

    Google Scholar 

  • Ragnone, A., Campani, M. & Verri, A. (1992). Identifying multiple motions from optical flow Second European Conference on Computer VisionSanta Margerita Ligure, Italy, 258–266.

    Google Scholar 

  • Raiguel, S., Van Hulle, M. M., Xiao, D. K., Marcar, V. L. & Orban, G. A. (1995). Shape and spatial distribution of receptive fields and antagonistic motion surrounds in the middle temporal area (V5) of the macaque Eur. J. Neurosci.72064–2082.

    Google Scholar 

  • Rieger, J. H. & Lawton, D. T. (1985). Processing differential image motion J. Opt. Soc. Am. A2354–360.

    Google Scholar 

  • Rieger, J. H. & Toet, L. (1985). Human visual navigation in the presence of 3-D rotations Biol. Cybern.52377–381.

    Google Scholar 

  • Royden, C. S. (1997). Mathematical analysis of motion-opponent mechanisms used in the determination of heading and depth J. Opt. Soc. Am. A142128–2143.

    Google Scholar 

  • Royden, C. S. (2002). Computing heading in the presence of moving objects: A model that uses motion-opponent operators Vision Res.423043–3058.

    Google Scholar 

  • Royden, C. S. & Conti, D. (2003). A model using MT-like motion-opponent operators explains an illusory transformation in the optic flow field. Vision Res.(submitted).

    Google Scholar 

  • Royden, C. S. & Hildreth, E. C. (1996). Human heading judgments in the presence of moving objects Percept. Psychophys.58836–856.

    Google Scholar 

  • Royden, C. S. & Hildreth, E. C. (1999). Differential effects of shared attention on perception of heading and 3-D object motion Percept. Psychophys.61120–133.

    Google Scholar 

  • Royden, C. S., Wolfe, J. & Klempen, N. (2001). Visual Search Asymmetries in Motion and Optic Flow Fields Percept. Psychophys.63436–444.

    Google Scholar 

  • Royden, C. S., Wolfe, J. M., Konstantinova, E. & Hildreth, E. C. (1996). Search for a moving object by a moving observer. Invest. Ophthalmol. Vis. Sci. 37 (suppl), 299 (Abstract).

    Google Scholar 

  • Saito, H., Yukie, M., Tanaka, K., Hikosaka, K., Fukada, Y. & Iwai, E. (1986). Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey, J. Neurosci., 6, 145–157.

    PubMed  CAS  Google Scholar 

  • Tanaka, K. & Saito, H. (1989). Analysis of motion in the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey, J. Neurophysiol., 62, 626–641.

    PubMed  CAS  Google Scholar 

  • Thompson, W. T. & Pong, T. C. (1990). Detecting moving objects Int. J. Comput. Vis.439–57.

    Google Scholar 

  • van den Berg, A. V. (1992). Robustness of perception of heading from optic flow Vision Res.32 1285–1296.

    Google Scholar 

  • Verghese, P., & Pelli, D. G. (1992). The information capacity of visual attention Vision Res.32, 983–995.

    Google Scholar 

  • Warren, W. H. & Hannon, D. J. (1988). Direction of self-motion is perceived from optical flow Nature336, 162–163.

    Google Scholar 

  • Warren, W. H. & Hannon, D. J. (1990). Eye movements and optical flow J. Opt. Soc. Am. A7 160–169.

    Google Scholar 

  • Warren, W. H. & Saunders, J. A.(1995). Perceiving heading in the presence of moving objects Perception24 315–331.

    Google Scholar 

  • Xiao, D. K., Raiguel, S., Marcar, V., Koenderink, J. & Orban, G. A. (1995). Spatial heterogeneity of inhibitory surrounds in the middle temporal visual area, Proc. Nat. Acad. Sci. USA, 92, 11303–11306.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zemel, R. S. & Sejnowski, T. J. (1998). A model for encoding multiple object motions and self-motion in area MST of primate visual cortex, J. Neurosci., 18 531–547.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Royden, C.S. (2004). Modeling Observer and Object Motion Perception. In: Vaina, L.M., Beardsley, S.A., Rushton, S.K. (eds) Optic Flow and Beyond. Synthese Library, vol 324. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2092-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2092-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6589-6

  • Online ISBN: 978-1-4020-2092-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics