Functional Neuroanatomy of Heading Perception in Humans

  • Lucia M. Vaina
  • Sergei Soloviev
Part of the Synthese Library book series (SYLI, volume 324)


As we move through the environment, the pattern of visual motion on the retina provides rich information about our passage through the scene. There is an abundant physiological and psychophysical evidence that this information, termed “optic flow” (Gibson, 1950), is an essential component of navigation in the three-dimensional space, since it is critical for encoding self-motion, for the perception of object movement and for controlling posture and locomotion. Psychophysical experiments have demonstrated that human observers can recover with high accuracy the direction of heading from optic flow patterns, even in the absence of actual self-motion (Warren, 1998, 1999). Electrophysiological studies on the ‘motion system’ in the dorsal extrastriate cortex in monkeys have identified cortical areas that might provide the neural substrate for the analysis of optic flow patterns and for the direction of self-motion (heading). In particular, the dorsal medial division of the macaque middle superior temporal area (dMST) has been proposed to be specialized for the analysis of complex optic flow information (Albright, 1993; Albright & Stoner, 1995; Andersen, 1997; Andersen et al., 2000; Wurtz & Duffy, 1992) and recent studies (Britten & Van Wezel, 1998, 2002) have shown that neurons in this area are also involved in recovering self-motion direction from optic flow cues.


Optic Flow Blood Oxygen Level Dependent Visual Motion Superior Temporal Sulcus Blood Oxygen Level Dependent Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguirre, G. K., & D’Esposito, M. (1997). Environmental knowledge is subserved by separable dorsal/ventral neural areas. J. Neurosci., 17 (7), 2512–2518.PubMedGoogle Scholar
  2. Aguirre, G. K., Zarahn, E., & D’Esposito, M. (1998). Neural components of topographical representation. Proc. Natl. Acad. Sci. USA., 95 (3), 839–846.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Albright, T.D. (1993). Cortical processing of visual motion. In: F.A. Miles, & J. Wallman (Eds.), Visual Motion and its Role in the Stabilization of Gaze (pp. 177–201): Elsevier Science Publishers B. V.Google Scholar
  4. Albright, T.D., & Stoner, G.R. (1995). Visual Motion Perception. Proc. Natl. Acad. Sci. USA., 92, 2433–2440.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Andersen, R.A. (1997). Neural mechanisms of visual motion perception in primates. Neuron, 18, 865–872.PubMedCrossRefGoogle Scholar
  6. Andersen, R. A., Shenoy, K. V., Crowell, J. A., & Bradley, D. C. (2000). Neural Mechanisms for Self-Motion Perception in Area MST. In: M. Lappe (Ed.) Neuronal Processing of Optic Flow, 44 (pp. 219–233 ). New York: Academic Press.CrossRefGoogle Scholar
  7. Beauchamp, M., & DeYoe, E. (1996). Brain areas for processing motion and their modulation by selective attention. NeuroImage, 3, 245.CrossRefGoogle Scholar
  8. Beer, J., Blakemore, C., Previc, F. H., & Liotti, M. (2002). Areas of the human brain activated by ambient visual motion, indicating three kinds of self-movement. Exp. Brain Res., 143 (1), 78–88.PubMedCrossRefGoogle Scholar
  9. Binder, J. R., Swanson, S.J., Hammeke, T. A., Morris, G. L., Mueller, W. M., Fischer, M., Benbadis, S., Frost, J. A., Rao, S. M., & Haughton, V. M. (1996). Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology, 46 (4), 978–984.PubMedCrossRefGoogle Scholar
  10. Braddick, O. J., O’Brien, J. M., Wattam Bell, J., Atkinson, J., Hartley, T., & Turner, R. (2001). Brain areas sensitive to coherent visual motion. Perception, 30 (1), 61–72.PubMedCrossRefGoogle Scholar
  11. Britten, K. H., & Van Wezel, R. J. (1998). Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nat. Neurosci., 1 (1), 59–63.PubMedCrossRefGoogle Scholar
  12. Britten, K. H., & Van Wezel, R. J. (2002). Area MST and heading perception in macaque monkeys. Cereb. Cortex, 12 (7), 692–701.PubMedCrossRefGoogle Scholar
  13. Cheng, K., Fujita, H., Kanno, I., Mura, S., & Tanaka, K. (1995). Human Cortical Regions Activations by Wide Field Visual Motion: An H2(15)O PET Study. J. Neurophysiol., 74 (1), 413–426.PubMedGoogle Scholar
  14. Corbetta, M. (1998). Frontoparietal cortical networks for directing attention and the eye to visual locations: Identical, independent, or overlapping neural systems? Proc. Natl. Acad. Sci. USA, 95 (3), 831–838.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Cutting, J. E., Springer, K., Braren, P. A., & Johnson, S. H. (1992). Wayfinding on foot from information in retinal, not optical, flow. J. Exp. Psychol. Gen., 121 (1), 41–72.PubMedCrossRefGoogle Scholar
  16. Cutting, J. E., Vishton, P. M., Fluckiger, M., Baumberger, B., & Gerndt, J. D. (1997). Heading and path information from retinal flow in naturalistic environments. Percept. Psychophys., 59 (3), 426–441.PubMedCrossRefGoogle Scholar
  17. D’Avossa, G., & Kersten, D. (1996). Evidence in human subjects for independent coding of azimuth and elevation for direction of heading from optic flow. Vision Res?, 36 (18), 2915–2924.PubMedCrossRefGoogle Scholar
  18. D’Avossa, G., Yacoub, E., Kersten, D., & Hu, X. (1998). Optic flow simulating eccentric ego-motion cause “activation” in occipito parietal areas of the contralateral hemisphere. Invest. Opthalmol. Vis. Sci., 39 (4), 467.Google Scholar
  19. D’Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R.K., & Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Cogn. Brain Res., 7 (1), 1–13.CrossRefGoogle Scholar
  20. de Jong, B. M., Shipp, S., Skidmore, B., Frackowiak, R. S., & Zeki, S. (1994). The cerebral activity related to the visual perception of forward motion in depth. Brain, 117, 1039–1054.PubMedCrossRefGoogle Scholar
  21. Desmond, J. E., Sum, J. M., Wagner, A. D., Demb, J. B., Shear, P. K., Glover, G. H., Gabrieli, J. D., & Morrell, M. J. (1995). Functional MRI measurment of language lateralization in Wada-tested patients. Brain, 118 (6), 1411–1419.PubMedCrossRefGoogle Scholar
  22. Dukelow, S. P., DeSouza, J. F., Culham, J. C., Van Den Berg, A. V., Menon, R. S., & Vilis, T. (2001). Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. J. Neurophysiol., 86, 1991–2000.PubMedGoogle Scholar
  23. Dumoulin, S. O., Baker, C. L., Hess, R. F., & Evans, A. C. (2003). Cortical specialization for processing first-and second-order motion. Cereb. Cortex, 13 (12), 1375–1385.PubMedCrossRefGoogle Scholar
  24. Dupont, P., De Bruyn, B., Vandenberghe, R., Rosier, A., Michiels, J., Marchal, G., Mortelmans, L., & Orban, G.A. (1997). The kinetic occipital region in human visual cortex. Cereb. Cortex, 7, 283–292.PubMedCrossRefGoogle Scholar
  25. Dupont, P., Orban, G. A., De Bruyn, B., Verbruggen, A., & Mortelmans, L. (1994). Many areas of the human brain respond to visual motion. J. Neurophysiol., 72 (3), 1420–1424.PubMedGoogle Scholar
  26. Gibson, J. J. (1950). The perception of the visual world. Boston: Houghton Mifflin.Google Scholar
  27. Gilaie-Dotan, S., Ullman, S., Kushnir, T., & Malach, R. (2001). Shape-selective stereo processing in human object-related visual areas. Hum. Brain Mapp., 15, 67–79.CrossRefGoogle Scholar
  28. Greenlee, M. W. (2000). Human Cortical areas underlying the perception of optic flow: brain imaging studies. Int. Rev. Neurobiol., 44, 269–292.PubMedCrossRefGoogle Scholar
  29. Grezes, J., Fonlupt, P., Bertenthal, B., Delon-Martin, C., Segebarth, C., & Decety, J. (2001). Does perception of biological motion rely on specific brain regions? NeuroImage, 13, 775–785.PubMedCrossRefGoogle Scholar
  30. Gron, G., Wunderlich, A. P., Spitzer, M., Tomczak, R., & Riepe, M. W. (2000). Brain activation during human navigation: gender-different neural networks as substrate of performance. Nat. Neurosci., 3 (4), 404–408.PubMedCrossRefGoogle Scholar
  31. Grossman, E., Donnelly, M., Price, R., Pickens, D., Morgan, V., Neighbor, G., & Blake, R. (2000). Brain Areas Involved in Perception of Biological Motion. J. Cogn. Neurosci., 12 (5), 711–720.PubMedCrossRefGoogle Scholar
  32. Grossman, E. D., & Blake, R. (2002). Brain Areas Active during Visual Perception of Biological Motion. Neuron, 35 (6), 1167–1175.PubMedCrossRefGoogle Scholar
  33. Hochberg, Y., & Tamhane, A. (1987). Multiple Comparison Procedures. New York: Wiley. Hogg, R. V., & Ledolter, J. ( 1987 ). Engineering Statistics. MacMilan Publishing Company.CrossRefGoogle Scholar
  34. Howard, R. J., Brammer, M., Wright, I., Woodruff, P. W., Bullmore, E. T., & Zeki, S. (1996). A direct demonstration of functional specialization within motion-related visual and auditory cortex of the human brain. Curr. Biol., 6 (8), 1015–1019.PubMedCrossRefGoogle Scholar
  35. Huk, A. C., Dougherty, R. F., & Heeger, D. J. (2002). Retinotopy and functional subdivision of human areas MT and MST. J. Neurosci., 22 (16), 7195–7205.PubMedGoogle Scholar
  36. Jornales, V. E., Jakob, M., Zamani, A., & Vaina, L. M. (1997). Deficits on complex motion perception, spatial discrimination, and eye-movements in a patient with bilateral occipital-parietal lesions [ARVO Abstract]. Invest. Ophthalomol. Vis. Sci., 38 (4), S72.Google Scholar
  37. Knudsen, E. I., DuLac, S., & Esterly, S. (1987). Computational maps in the brain. Annu. Rev. Neurosci., 10, 41–65.PubMedCrossRefGoogle Scholar
  38. McKeefry, D. J., Watson, J. D. G., Frackowiak, R. S. J., Fong, K., & Zeki, S. (1997). The activity in human areas V 1/V2, V3, and V5 during the perception of coherent and incoherent motion. NeuroImage, 5 (1), 1–12.PubMedCrossRefGoogle Scholar
  39. Mendola, J., Dale, A., Fischl, B., Liu, A., & Tootell, R. (1999). The representation of illusory and real contours in human cortical visual areas revealed by functional magnetic resonance imaging. J. Neurosci., 19 (19), 8560–8572.PubMedGoogle Scholar
  40. Morrone, M. C., Tosetti, M., Montanaro, D., Fiorentini, A., Cioni, G., & Burr, D. C. (2000). A cortical area that responds specifically to optic flow, revealed by fMRI. Nat. Neurosci., 3 (12), 1322–1328.PubMedCrossRefGoogle Scholar
  41. Orban, G. A. (2001). Neural coding in area MT/V5 and satellites: from antagonistic surround to the extraction of 3D structure from motion. In: W. Backhaus (Ed.) Neural Coding of Perceptual Systems, 9 (pp. 188–202 ). London: World Scientific Publishing Company.CrossRefGoogle Scholar
  42. Peuskens, H., Sunaert, S., Dupont, P., Van Hecks, P., & Orban, G. A. (2001). Human brain regions involved in heading estimation. J. Neurosci., 21 (7), 2451–2461.PubMedGoogle Scholar
  43. Racine, C., Vaina, L. M., Diaz, J., Zamani, A., & Gross, C. G. (1996). Are there specific anatomical correlates of biological perception in the human visual system? Society for Neuroscience 26th Annual Meeting. Abstracts, 22 (1), 400.Google Scholar
  44. Reppas, J. B., Niyogi, S., Dale, A. M., Sereno, M. I., & Tootell, R. B. (1997). Representation of motion boundaries in retinotopic human visual cortical areas. Nature, 388 (6638), 175–179.PubMedCrossRefGoogle Scholar
  45. Royden, C. S., & Hildreth, E. C. (1996). Human heading judgments in the presence of moving objects. Percept. Psychophys., 58 (6), 836–856.PubMedCrossRefGoogle Scholar
  46. Rutschmann, R., Schrauf, M., & Greenlee, M. W. (2000). Brain activation during dichoptic presentation of optic flow stimuli. Exp. Brain Res., 134 (4), 533–537.PubMedCrossRefGoogle Scholar
  47. Servos, P., Osu, R., Santi, A., & Kawato, M. (2002). The neural substrates of biological motion perception: an fMRI study. Cereb. Cortex, 12, 772–782.PubMedCrossRefGoogle Scholar
  48. Shmuel, A., Yacoub, E., Pfeuffer, J., Van de Moortele, P., Adriany, G., Hu, X., & Ugurbil, K. (2002). Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron, 36, 1195–1210.PubMedCrossRefGoogle Scholar
  49. Siegel, R. M. (1998). Representation of visual space in area 7a neurons using the cetner of mass equation. J. Comput. Neurosci., 5 (4), 365–381.PubMedCrossRefGoogle Scholar
  50. Siegel, R.M., & Read, H.L. (1997). Analysis of optic flow in the monkey parietal area 7a. Cerebral Cortex, 7 (4), 327–346.PubMedCrossRefGoogle Scholar
  51. Smith, A. T., Greenlee, M. W., Singh, K. D., Kraemer, F. M., & Hennig, J. (1998). The processing of first-and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). J. Neurosci., 18, 3816–3830.PubMedGoogle Scholar
  52. Sunaert, S. (2001). Functional magnetic resonance imaging: Studies of visual motion processing in the human brain. ACTA Biomedica Lovaniensia, 226, 1–123.Google Scholar
  53. Sunaert, S., Van Hecke, P., Marchal, G., & Orban, G. A. (1999). Motion-responsive regions of the human brain. Exp. Brain Res., 127 (4), 355–370.PubMedCrossRefGoogle Scholar
  54. Sunaert, S., Van Hecke, P., Marchal, G., & Orban, G. A. (2000). Attention to speed of motion, speed discrimination, and task difficulty: An fMRI study. NeuroImage, 11 (6), 612–623.PubMedCrossRefGoogle Scholar
  55. Talairach, J., & Tournoux, P. (1988). Co-Planar Stereotaxic Atlas of the Human Brain. New York: Thieme Medical Publishers.Google Scholar
  56. Tarr, M. J., & Warren, W. H. (2002). Virtual reality in behavioral neuroscience and beyond. Nat. Neurosci., 5 (Supplement), 1089–1092.CrossRefGoogle Scholar
  57. Thulborn, K. R., Carpenter, P. A., & Just, M. A. (1999). Plasticity of language-related brain function during recovery from stroke. Stroke, 30, 749–754.PubMedCrossRefGoogle Scholar
  58. Tootell, R. B. H., Mendola, J. D., Hadjikhani, N. K., Ledden, P. J., Liu, A. K., Reppas, J. B., Sereno, M. I., & Dale, A. M. (1997). Functional analysis of V3a and related areas in human visual cortex. J. Neurosci., 17 (18), 7060–7078.PubMedGoogle Scholar
  59. Tootell, R. B. H., Mendola, J. D., Hadjikhani, N. K., Liu, A. K., & Dale, A. M. (1998). The representation of the ipsilateral visual field in human cerebral cortex. Proc. Natl. Acad. Sci. USA, 95 (3), 818–824.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Tootell, R. B. H., Kwong, K. K., Belliveau, J. W., Baker, J. R., Stern, C. E., Hockfield, S. J., Breiter, H. C., Born, R., Benson, R., Brady, T. J., & Rosen, B. R. (1993). Mapping human visual cortex: evidence from functional MRI and histology. Invest. Opthalmol. Vis. Sci., 34 (4), 813.Google Scholar
  61. Tootell, R. B. H., Reppas, J. B., Dale, A. M., Look, R. B., Sereno, M. I., Malach, R., Brady, T. J., & Rosen, B. R. (1995a). Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature, 375, 139–141.PubMedCrossRefGoogle Scholar
  62. Tootell, R. B. H., Reppas, J. B., Kwong, K. K., Malach, R., Born, R. T., Brady, T. J., Rosen, B. R., & Belliveau, J. W. (1995b). Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J. Neurosci., 15 (4), 3215–3230.PubMedGoogle Scholar
  63. Vaina, L. M. (1998). Complex motion perception and its deficits. Curr. Opin. Neurobiol., 8 (4), 494–502.PubMedCrossRefGoogle Scholar
  64. Vaina, L. M., & Gross, C. G. ((submitted)). Perceptual deficits in patients with impaired recognition of biological motion after temporal lesions.Google Scholar
  65. Vaina, L. M., & Rushton, S. K. (2000). What neurological patients tell us about the use of optic flow. Int. Rev. Neurobiol., 44, 293–313.PubMedCrossRefGoogle Scholar
  66. Vaina, L. M., Solomon, J., Chowdhury, S., Sinha, P., & Belliveau, J. W. (2001). Functional neuroanatomy of biological motion perception in humans. Proc. Natl. Acad. Sci. USA, 98 (20), 11656–11661.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Van Oostende, S., Sunaert, S., Van Hecke, P., Marchal, G., & Orban, G. A. (1997). The kinetic occipital (KO) region in man: an fMRI study. Cereb. Cortex, 7, 690–701.PubMedCrossRefGoogle Scholar
  68. Vishton, P. M., & Cutting, J. E. (1995). Wayfinding, displacements, and mental maps: Velocity fields are not typically used to determine one’s heading. J. Exp. Psychol. Hum. Percept. Perform., 21, 978–995.PubMedCrossRefGoogle Scholar
  69. Wann, J. P. (1996). Virtual reality environments for rehabilitation of perceptual-motor disorders following stroke. The First European Conference on Disability, Virtual Reality and Associated Technologies (pp. 233–238 ). Maidenhead, U.K.Google Scholar
  70. Warren, W. H. (1998). The state of flow. In: T. Watanabe (Ed.) High-level motion processing (pp. 315–358 ). Cambridge, MA: MIT Press.Google Scholar
  71. Warren, W. H. (1999). Visually controlled locomotion, 40 years later. Ecol. Psychol., 10 (3–4), 177–219.Google Scholar
  72. Warren, W. H., & Saunders, J. A. (1995). Perceiving heading in the presence of moving objects. Perception, 24 (3), 315–331.PubMedCrossRefGoogle Scholar
  73. Watson, J. D., Myers, R., Frackowiak, R. S., Hajnal, J. V., Woods, R. P., Mazziotta, J. C., Shipp, S., & Zeki, S. (1993). Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb. Cortex, 3 (2), 79–94.PubMedCrossRefGoogle Scholar
  74. Woods, R. P., Grafton, S. T., Holmes, C. J., Cherry, S. R., & Mazziotta, J. C. (1998). Automated image registration: I. General methods and intrasubject, intramodality validation. J. Comput. Assist. Tomogr., 22 (1), 139–152.PubMedCrossRefGoogle Scholar
  75. Woods, R. P., Grafton, S. T., Watson, J. D., Sicotte, N. L., & Mazziotta, J. C. (1998). Automated image registration: II. Intersubject validation of linear and nonlinear models. J. Comput. Assist. Tomogr., 22 (1), 153–165.PubMedCrossRefGoogle Scholar
  76. Woods, R. P., Mazziotta, J. C., & Cherry, S. R. (1993). MRI-PET registration with automated algorithm. J. Comput. Assist. Tomogr., 17 (4), 536–546.PubMedCrossRefGoogle Scholar
  77. Worsley, K. J., Evans, A. C., Marrett, S., & Neelin, P. (1992). A three-dimensional statistical analysis for CBF activation studies in human brain. J. Cereb. Blood Flow Metab., 12 (6), 900–918.PubMedCrossRefGoogle Scholar
  78. Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J., & Evans, A. C. (1996). A unified ststistical approach for determining significant signals in images of cerebral activation. Hum. Brain Mapp., 4, 58–73.PubMedCrossRefGoogle Scholar
  79. Wunderlich, G., Marshall, J. C., Amunts, K., Weiss, P. H., Mohlberg, H., Zafiris, O., Zilles, K., & Fink, G. R. (2002). The importance of seeing it coming: a functional magnetic resonance imaging study of motion-in-depth towards the human observer. Neuroscience, 112 (3), 535–540.PubMedCrossRefGoogle Scholar
  80. Wurtz, R. H. (1998). Optic flow: A brain region devoted to optic flow analysis? Curr. Biol., 8 (16), 554–556.CrossRefGoogle Scholar
  81. Wurtz, R. H., & Duffy, C. J. (1992). Neuronal correlates of optic flow stimulation. Ann. N. Y. Acad. Sci., 656, 205–219.PubMedCrossRefGoogle Scholar
  82. Zeki, S., Perry, R. J., & Barteis, A. (2003). The processing of kinetic contours in the brain. Cereb. Cortex, 2003 (13), 189–202.CrossRefGoogle Scholar
  83. Zeki, S., Watson, J. D. G., Lueck, C. J., Friston, K. J., Kennard, C., & Frackowiak, R. S. J. (1991). A direct demonstration of functional specialization in human visual cortex. J. Neurosci., 11(3), 641–649.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Lucia M. Vaina
    • 1
    • 2
  • Sergei Soloviev
    • 1
  1. 1.Brain and Vision Research Laboratory, Department of Biomedical EngineeringBoston UniversityBostonUSA
  2. 2.Department of NeurologyHarvard Medical SchoolBostonUSA

Personalised recommendations