Antirealism and the Roles of Truth

  • Göran Sundholm


The position indicated by the term “antirealism” has come to the fore in philosophical discussion during the last thirty years, largely as a result of the writings of Michael Dummett.1 Prima facie one would expect an antirealist critique of realism to comprise two parts: a negative part (as the name indicates) criticising the realist view, and a positive part setting out a constructive alternative to the realist position. The tradition starting with Dummett, it is fair to say, has mainly been concerned with the negative part of antirealism. Here, however, the antirealist appears to have a large, and definite, disadvantage in his perennial discussion with the realist, purely in virtue of the chosen label; his position is laid down negatively in opposition to a prior realist position. Accordingly, the antirealist’s campaign will be fought on a field determined by his opponent, and in terms chosen by him. Therefore, in this Chapter, I do not take the views of Dummett as my point of departure, especially since the need for a survey of antirealism from this perspective has been excellently met by Hale (1997). Furthermore, in a Handbook of Epistemology, this manner of proceeding (that is, not taking Dummett’s views as the point of departure) is quite appropriate, since one of Dummett’s main tenets is the primacy of the theory of meaning over the theory of knowledge. Instead, I discuss a number of traditional epistemological notions and theories from an antirealist standpoint, and I also treat of the early work in modern mathematical intuitionism that provided the inspiration for much of the current work on semantical antirealism. Thus the present Chapter can be seen as providing an epistemological and philosophico-mathematical background to the modern semantical versions of antirealism.


Propositional Content Natural Deduction Propositional Truth Evidence Theory Elimination Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bolzano, B.: 1837, Wissenschaftslehre, J. von Seidel, Sulzbach.Google Scholar
  2. Brentano, F.: 1930 (197411), Wahrheit und Evidenz, O. Kraus (ed.), Felix Meiner Verlag, Hamburg.Google Scholar
  3. Brentano, F.: 1956, Die Lehre vom richtigen Urteil, F. Mayer-Hildebrand (ed.), A. Francke Verlag, Bern.Google Scholar
  4. Brouwer, L. E. J.: 1908, `De onbetrouwbaarheid der logische principes’, Tijdschrift voor Wijsbegeerte 2, 152–158.Google Scholar
  5. Church, A.: `A note on the Entscheidungsproblem’, Journal of Symbolic Logic 1,40–41, corrections 101–102.Google Scholar
  6. Currie, G.: 1987, `Remarks on Frege’s Conception of Inference’, Notre Dame Journal of Formal Logic 28, 53–68.CrossRefGoogle Scholar
  7. Curry, H. B.: 1976 (19631), Foundations of Mathematical Logic, Dover Pub., New York. Diller, J. and A. Troelstra: 1984, ‘Realizability and intuitionistic logic’, Synthese 60, 253–282.Google Scholar
  8. Dubislav, W.: 1931111 (19811V), Die Definition,Felix Meiner Verlag, Hamburg. Dummett, M.: 1977, Elements of Intuitionism,Oxford U. P.Google Scholar
  9. Dummett, M.: 1978, Truth and Other Enigmas, Duckworth, London.Google Scholar
  10. Dummett, M.: 1991, The Logical Basis of Metaphysics, Duckworth, London.Google Scholar
  11. Dummett, M.: 1993, The Seas of Language, Duckworth, London.Google Scholar
  12. Duns Scotus, J.: 1987, Philosophical Writings, A. Wolter and O. F. M. (eds.), Hackett Pub., Indianapolis.Google Scholar
  13. Fichte, G.: 1797, `Erste Einleitung in die Wissenschaftslehre’, Philosophisches Journal 5, 147.Google Scholar
  14. Franchella, M.: 1994, `Heyting’s Contribution to the Change in Research into the Foundations of Mathematics’, History and Philosophy of Logic 15, 149–172.CrossRefGoogle Scholar
  15. Frege, G.: 1892, `Über Sinn und Bedeutung’, Zeitschrift für Philsophie und philosophische Kritik 100, 25–50.Google Scholar
  16. Frege, G.: 1893, 1903, Grundgesetze der Arithmetik, Band I, Band I I, H. Pohle, Jena.Google Scholar
  17. Frege, G.: 1918, `Der Gedanke’, Beiträge zur Philosophie des deutschen Idealismus 2, 58–77.Google Scholar
  18. Gödel, K.: 1931, `Über formal unentscheidbare Sätze der Principia mathematica und verwandter Systeme I’, Monatshefte fürMatematik und Physik 38, 173–198.Google Scholar
  19. Gödel, K.: 1944, `Russell’s mathematical logic’, in P. A. Schilpp (ed.), The Philosophy of Bertrand Russell, Library of Living Philosophers, Evanston, pp. 123–153 and in Gödel, 1990, pp. 119–143.Google Scholar
  20. Gödel, K.: 1972, `On an extension of finitary mathematics which have not yet been used’, in Gödel, 1990, pp. 271–280.Google Scholar
  21. Gödel, K.: 1990, Collected Works, Vol. II,Oxford U. P New York.Google Scholar
  22. Goldfarb, W.: `Logic in the twenties: the nature of the quantifier’, Journal of Symbolic Logic 44, 1979, 351–368.CrossRefGoogle Scholar
  23. Hale, B 1997, `Realism and its oppositions’, in B. Hale and C. Wright, A Companion to the Philosophy of Language,Blackwell, Oxford, pp. 271–308.Google Scholar
  24. Heyting, A.: 1930, `Die formalen Regeln der intuitionistischen Logik’, Sitzungsberichte der preussischen Akademie von Wissenschaften, Phys.-math. Klasse, pp. 42–56. English translation in P. Mancosu (ed.), From Brouwer to Hilbert, Oxford U. P., 1997, pp. 311327.Google Scholar
  25. Heyting, A.: 1930a, `Sur la logique intuitionniste’, Acad. Roy. Belgique, Bull. Cl. Sci., V, 16, 957–963; English translation in P. Mancosu (ed.), From Brouwer to Hilbert, Oxford U. P., 1997, pp. 306–310.Google Scholar
  26. Heyting, A.: 1931, `Die intuitionistische Grundlegung der Mathematik’, Erkenntnis 2, pp. 106–115. English translation in P. Benacerraf and H. Putnam, Philosophy of Mathematics ( second edition ), Cambridge U. P., Cambridge, 1983, pp. 52–61.Google Scholar
  27. Heyting, A.:1934, Mathematische Grundlagenforschung. Intuitionismus. Beweistheorie,Julius Springer, Berlin.Google Scholar
  28. Heyting, A.: 1958, `Intuitionism in mathematics’, in Raymond Klibanski (ed.), Philosophy in the Mid-Century, La nouva editrice, Florence, pp. 101–115.Google Scholar
  29. Hintikka, J.: 1988, `On the development of the model-theoretic viewpoint in logical theory’, Synthese 77, 1–36.CrossRefGoogle Scholar
  30. Hintikka, J 1996, Lingua Universalis vs. Calculus Ratiocinator: An Ultimate Presupposition of Twentieth-Century Philosophy,Kluwer, Dordrecht.Google Scholar
  31. Howard, W.: 1969, W.: 1969, `The fomulae-as-types notion of construction’, in Seldin, Jonathan, and Roger Hindley (eds.), To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, Academic Press, London, 1980, pp. 479–490.Google Scholar
  32. Kant, L: 1800 (1904III) Logik, B. Jäsche (ed.), Felix Meiner Verlag, Leipzig.Google Scholar
  33. Kolmogoroff, A. N.: 1932, `Zur Deutung der intuitionistichen Logik’, Mathematische Zeitschrift 35 (1932), 58–65; English translation in P. Mancosu (ed.), From Brouwer to Hilbert, Oxford U. P., 1997, pp. 328–334.Google Scholar
  34. Martin-Löf, P.: 1984, Intuitionistic Type Theory, Bibliopolis, Naples.Google Scholar
  35. Martin-Löf, P.: 1985, `On the meanings of the logical constants and the justifications of the logical laws’, in Nordic Journal of Philosophical Logic 1 (1996), 11–60; originally delivered in 1983 and published in 1985; electronically available at Google Scholar
  36. Martin-Löf, P.: 1987, `Truth of a proposition, evidence of judgement, validity of a proof, Synthese 73, 191–212.Google Scholar
  37. Martin-Löf, P.: 1994, `Analytic and synthetic judgements in type theory’, in P. Parrini (ed.), Kant and Contemporary Epistemology, Kluwer, Dordrecht, pp. 87–99.CrossRefGoogle Scholar
  38. Martin-Löf, P.: 1995, ‘Verificationism then and now’, in Schimanovich, W. De Pauli, E. Köhler, and F. Stadler (eds.), The Foundational Debate: Complexity and Constructivity in Mathematics and Physics, Kluwer, Dordrecht, pp. 187–196.CrossRefGoogle Scholar
  39. Martin-Löf, P.: 1998, `Truth and knowability: on the principles C and K of Michael Dummett’, in H. G. Dales and G. Oliven (eds.), Truth in Mathematics, Clarendon Press, Oxford.Google Scholar
  40. Mulligan, K., P. Simons, and B. Smith: 1984, `Truth-Makers’, Philosophy and Phenomenological Research 44, 287–321.CrossRefGoogle Scholar
  41. Niniluoto, I.: 1997, `Tarskian truth as correspondence–replies to some objections’, in J.Peregrin (ed.), The Nature of Truth (If Any). Proceedings of the International Colloquium, Prague, September 17–20, 1996, Filosofia, Prague, 1997, pp. 153–160.Google Scholar
  42. Olson, R. G.: 1967, `Nihilism’, in P. Edwards (ed.), The Encyclopaedia of Philosophy, Macmillan, New, York.Google Scholar
  43. Patzig, G.: 1971, `Kritische Bemerkungen zu Husserls thesen über das Verhältnis von Wahrheit und Evidenz’, Neue Hefte für Philosophie, Heft 1, Vandenbroek und Rupprecht, Göttingen, 12–32; translated into English by J. N. Mohanty as `Husserl on truth and evidence’, in J. N. Mohanty (ed.), Readings on Husserl’s Logical Investigations, Nijhoff, The Hague, 1977, pp. 179–196.Google Scholar
  44. Prawitz, D.: 1971, `Ideas and results in proof theory’, in J. E. Fenstad, Proceedings of the Second Scandinavian Logic Symposium, Amsterdam, North-Holland, pp. 235–307. Putnam, H.: 1981, Realism and Reason, Cambridge U. P., Cambridge.Google Scholar
  45. Quine, W. V. O.: 1951, `Two dogmas of empiricism’, reprinted in From a Logical Point of View, Harper & Row, N. Y., 196111, pp. 20–46.Google Scholar
  46. Ramsey, F. P.: 1925, `The foundations of mathematics’, Proceedings of the Aristotelian Society 25, 338–384.Google Scholar
  47. Rogers, Jr., H 1967, Theory of Recursive Functions and Effective Computability,McGraw-Hill Book Company, New York.Google Scholar
  48. Schlick, M.: 1910–11, `Das Wesen der Wahrheit nach der modernen Logik’, Vierteljahrschrift für wissenschaftliche Philosophie und Soziologie 34–35, 386–477; reprinted in M. Schlick, Philosophische Logik, B. Philippi (ed. ), Suhrkamp Taschenbuch, 1986.Google Scholar
  49. Stegmüller, W.: 1954, Metaphysik, Wissenschaft, Skepsis, Humboldt-Verlag, Vienna. Sundholm, G.: 1983, `Constructions, proofs and the meaning of the logical constants’, Journal of Philosophical Logic 12, 151–172.Google Scholar
  50. Sundholm, G.: 1987, `Proof theory and meaning’, in D. Gabbay and F. Guenthner, Handbook of Philosophical Logic, Vol. III, Reidel, Kluwer, pp. 471–506.Google Scholar
  51. Sundholm, G.:, 1990, `Sätze der Logik: an Alternative Conception’, in R. Haller and J. Brand! (eds.), Wittgenstein — Towards a Re-Evaluation. Prroceedings of the 14th International Wittgenstein-Symposium Centenary Celebration, Verlag Hölder-Pichler-Tempsky, Wien, pp. 59–61.Google Scholar
  52. Sundholm, G.: 1993, `Questions of Proof, Manuscrito (Campinas, S. P.), 16, pp. 47–70.Google Scholar
  53. Sundholm, G.: 1994, ‘Ontologic versus epistemologic’, in D. Prawitz and D. Westerstdhl (eds.), Logic and Philosophy of Science in Uppsala, Kluwer, Dordrecht, pp. 373–384.Google Scholar
  54. Sundholm, G.: 1994a, `Existence, proof and truth-making: a perspective on the intuitionistic conception of truth’, TOPOI 13, 117–126.CrossRefGoogle Scholar
  55. Sundholm, G.: 1994b, `Proof-theoretical semantics and Fregean identity criteria for propositions’, The Monist 77, 294–314.CrossRefGoogle Scholar
  56. Sundholm, G.: 1997, `Implicit epistemic aspects of constructive logic’, Journal of Logic, Language, and Information 6, 191–212.Google Scholar
  57. Sundholm, G.: 1998, `Inference, Consequence, Implication’, Philsophia Mathematica 6, 178194.Google Scholar
  58. Sundholm, G.: 1998a, `Inference versus Consequence’, in Logica Yearbook 1997 ( T. Childers, ed.), Philsophia Publ., Czech Academy of Science, Prague, pp. 26–35.Google Scholar
  59. Sundholm, G., forthcoming: `Proofs as Acts versus Proofs as Objects: Some Questions for Dag Prawitz’, to appear in a special issue of Theoria dedicated to the work of Dag Prawitz.Google Scholar
  60. Tarski, A.: 1936, `Über den Begriff der logischen Folgerung’, Act. Congr. Phil. Sci. (Paris), VII, Actualités Scientifiques et Industrielle 394, 1–11.Google Scholar
  61. Tarski, A. and R. Vaught, `Arithmetical Extensions of Relational Systems’, Compositio Matematica 13, 81–102.Google Scholar
  62. Tennant, N.: 1987, Anti-Realism and Logic, Clarendon Press, Oxford.Google Scholar
  63. Tennant, N.: 1997, The Taming of the True, Clarendon Press, Oxford.Google Scholar
  64. Thiel, C., 1988, `Die Kontroverse um die intuitionistische Logik vor ihre Axiomatisierung durch Heyting im Jahre 1930’, History and Philosophy of Logic 9, 67–75.CrossRefGoogle Scholar
  65. van Heijenoort, J.: 1967, `Logic as calculus versus logic as language’, Synthese 17, 324–330.CrossRefGoogle Scholar
  66. van Heijenoort, J.: 1976, `Set-theoretic semantics’, in R. O.Gandy and M. Hyland (eds.), Logic Colloqium `76, North-Holland, Amsterdam, pp. 183–190.Google Scholar
  67. Vier, P. C.: 1951, Evidence and its Function According to John Duns Scotus, The Franciscan Institute, St. Bonaventure, N.Y.Google Scholar
  68. Weyl, H.: 1921, `Über die neue Grundlagenkrise der Mathematik’, Mathematische Zeitschrift 10, 37–79; English translation in P. Mancosu, From Brouwer to Hilbert, Oxford U. P., 1997, pp. 86–118.Google Scholar
  69. Wiggins, D.: 1980, `What would be a substantial theory of truth?’, in Z. van Straaten, Philosophical Subjects: Essays Presented to P. F. Strawson, Clarendon, Oxford, pp. 189221.Google Scholar
  70. Wiggins, D.: 1992, `Meaning, truth-conditions, proposition: Frege’s doctrine of sense retrieved, resumed and redeployed in the light of certain recent criticisms’, Dialectica 46, 61–90.CrossRefGoogle Scholar
  71. Wiggins, D.: 1997, `Meaning and truth-conditions: from Frege’s grand design to Davidson’s’, in B. Hale and C. Wright (eds.), A Companion to the Philosophy of Language, Blackwell, Oxford, pp. 271–308.Google Scholar
  72. Wittgenstein, L.: 1922, Tractatus Logico-Philosophicus, Routledge and Kegan Paul, London.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Göran Sundholm
    • 1
  1. 1.Leyden UniversityNetherlands

Personalised recommendations